Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Data Visualization Cookbook (Second Edition)

You're reading from   Python Data Visualization Cookbook (Second Edition) Visualize data using Python's most popular libraries

Arrow left icon
Product type Paperback
Published in Nov 2015
Publisher
ISBN-13 9781784396695
Length 302 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Igor Milovanovic Igor Milovanovic
Author Profile Icon Igor Milovanovic
Igor Milovanovic
 Foures Foures
Author Profile Icon Foures
Foures
Giuseppe Vettigli Giuseppe Vettigli
Author Profile Icon Giuseppe Vettigli
Giuseppe Vettigli
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Python Data Visualization Cookbook Second Edition
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Preface
1. Preparing Your Working Environment FREE CHAPTER 2. Knowing Your Data 3. Drawing Your First Plots and Customizing Them 4. More Plots and Customizations 5. Making 3D Visualizations 6. Plotting Charts with Images and Maps 7. Using the Right Plots to Understand Data 8. More on matplotlib Gems 9. Visualizations on the Clouds with Plot.ly Index

Smoothing the noise in real-world data


In this recipe, we introduce a few advanced algorithms to help with cleaning the data coming from real-world sources. These algorithms are well known in the signal processing world, and we will not go deep into mathematics but will just exemplify how and why they work and for what purposes they can be used.

Getting ready

Data that comes from different real-life sensors usually is not smooth and clean and contains some noise that we usually don't want to show on diagrams and plots. We want graphs and plots to be clear and to display information and cost viewers minimal efforts to interpret.

We don't need any new software installed because we are going to use some already familiar Python packages: NumPy, SciPy, and matplotlib.

How to do it...

The basic algorithm is based on using the rolling window (for example, convolution). This window rolls over the data and is used to compute the average over that window.

For our discrete data, we use NumPy's convolve...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images