Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
OpenGL 4 Shading Language Cookbook, Second Edition

You're reading from   OpenGL 4 Shading Language Cookbook, Second Edition Acquiring the skills of OpenGL Shading Language is so much easier with this cookbook. You'll be creating graphics rather than learning theory, gaining a high level of capability in modern 3D programming along the way.

Arrow left icon
Product type Paperback
Published in Dec 2013
Publisher Packt
ISBN-13 9781782167020
Length 394 pages
Edition 2nd Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
 Wolff Wolff
Author Profile Icon Wolff
Wolff
David A Wolff David A Wolff
Author Profile Icon David A Wolff
David A Wolff
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

OpenGL 4 Shading Language Cookbook Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started with GLSL FREE CHAPTER 2. The Basics of GLSL Shaders 3. Lighting, Shading, and Optimization 4. Using Textures 5. Image Processing and Screen Space Techniques 6. Using Geometry and Tessellation Shaders 7. Shadows 8. Using Noise in Shaders 9. Particle Systems and Animation 10. Using Compute Shaders Index

Simulating fog


A simple fog effect can be achieved by mixing the color of each fragment with a constant fog color. The amount of influence of the fog color is determined by the distance from the camera. We could use either a linear relationship between the distance and the amount of fog color, or we could use a non-linear relationship such as an exponential one.

The following figure shows four teapots rendered with a fog effect produced by mixing the fog color in a linear relationship with distance.

To define this linear relationship we can use the following equation:

In the preceding equation, dmin is the distance from the eye where the fog is minimal (no fog contribution), and dmax is the distance where the fog color obscures all other colors in the scene. The variable z represents the distance from the eye. The value f is the fog factor. A fog factor of zero represents 100 percent fog, and a factor of one represents no fog. Since fog typically looks thickest at large distances, the fog factor...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images