Keras sequential model example for MNIST dataset
The following is a small example of building a simple multilayer perceptron (covered in detail in Chapter 5) to classify handwritten digits from the MNIST set:
import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout from keras.optimizers import SGD from keras import utils import numpy as np # define some hyper parameters batch_size = 100 n_inputs = 784 n_classes = 10 n_epochs = 10 # get the data (x_train, y_train), (x_test, y_test) = mnist.load_data() # reshape the two dimensional 28 x 28 pixels # sized images into a single vector of 784 pixels x_train = x_train.reshape(60000, n_inputs) x_test = x_test.reshape(10000, n_inputs) # convert the input values to float32 x_train = x_train.astype(np.float32) x_test = x_test.astype(np.float32) # normalize the values of image vectors to fit under 1 x_train /= 255 x_test /= 255 # convert output data into one hot encoded format...