Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Java Machine Learning

You're reading from   Mastering Java Machine Learning A Java developer's guide to implementing machine learning and big data architectures

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781785880513
Length 556 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
 Kamath Kamath
Author Profile Icon Kamath
Kamath
Krishna Choppella Krishna Choppella
Author Profile Icon Krishna Choppella
Krishna Choppella
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Mastering Java Machine Learning
Credits
Foreword
About the Authors
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
1. Machine Learning Review 2. Practical Approach to Real-World Supervised Learning FREE CHAPTER 3. Unsupervised Machine Learning Techniques 4. Semi-Supervised and Active Learning 5. Real-Time Stream Machine Learning 6. Probabilistic Graph Modeling 7. Deep Learning 8. Text Mining and Natural Language Processing 9. Big Data Machine Learning – The Final Frontier Linear Algebra Probability Index

Case study


In this section, we will perform a case study with real-world machine learning datasets to illustrate some of the concepts from Bayesian networks.

We will use the UCI Adult dataset, also known as the Census Income dataset (http://archive.ics.uci.edu/ml/datasets/Census+Income). This dataset was extracted from the United States Census Bureau's 1994 census data. The donors of the data is Ronny Kohavi and Barry Becker, who were with Silicon Graphics at the time. The dataset consists of 48,842 instances with 14 attributes, with a mix of categorical and continuous types. The target class is binary.

Business problem

The problem consists of predicting the income of members of a population based on census data, specifically, whether their income is greater than $50,000.

Machine learning mapping

This is a problem of classification and this time around we will be training Bayesian graph networks to develop predictive models. We will be using linear, non-linear, and ensemble algorithms, as we...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images