Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning with Theano

You're reading from   Deep Learning with Theano Perform large-scale numerical and scientific computations efficiently

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781786465825
Length 300 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
 Bourez Bourez
Author Profile Icon Bourez
Bourez
Arrow right icon
View More author details
Toc

Table of Contents (22) Chapters Close

Deep Learning with Theano
Credits
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
1. Theano Basics FREE CHAPTER 2. Classifying Handwritten Digits with a Feedforward Network 3. Encoding Word into Vector 4. Generating Text with a Recurrent Neural Net 5. Analyzing Sentiment with a Bidirectional LSTM 6. Locating with Spatial Transformer Networks 7. Classifying Images with Residual Networks 8. Translating and Explaining with Encoding – decoding Networks 9. Selecting Relevant Inputs or Memories with the Mechanism of Attention 10. Predicting Times Sequences with Advanced RNN 11. Learning from the Environment with Reinforcement 12. Learning Features with Unsupervised Generative Networks 13. Extending Deep Learning with Theano Index

Summary


Classification is a very wide topic in machine learning. It consists of predicting a class or a category, as we have shown with our handwritten digits example. In Chapter 7, Classifying Images with Residual Networks, we'll see how to classify a wider set of natural images and objects.

Classification can be applied to different problems and the cross-entropy/negative log likelihood is the common loss function to solve them through gradient descent. There are many other loss functions for problems such as regression (mean square error loss) or unsupervised joint learning (hinge loss).

In this chapter, we have been using a very simple update rule as gradient descent named stochastic gradient descent, and presented some other gradient descent variants (Momentum, Nesterov, RMSprop, ADAM, ADAGRAD, ADADELTA). There has been some research into second order optimizations, such as Hessian Free, or K-FAC, which provided better results in deep or recurrent networks but remain complex and costly...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images