Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
C++ High Performance

You're reading from   C++ High Performance Master the art of optimizing the functioning of your C++ code

Arrow left icon
Product type Paperback
Published in Dec 2020
Publisher Packt
ISBN-13 9781839216541
Length 544 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Björn Andrist Björn Andrist
Author Profile Icon Björn Andrist
Björn Andrist
 Sehr Sehr
Author Profile Icon Sehr
Sehr
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. A Brief Introduction to C++ 2. Essential C++ Techniques FREE CHAPTER 3. Analyzing and Measuring Performance 4. Data Structures 5. Algorithms 6. Ranges and Views 7. Memory Management 8. Compile-Time Programming 9. Essential Utilities 10. Proxy Objects and Lazy Evaluation 11. Concurrency 12. Coroutines and Lazy Generators 13. Asynchronous Programming with Coroutines 14. Parallel Algorithms 15. Other Books You May Enjoy
16. Index

Move semantics explained

Move semantics is a concept introduced in C++11 that, in my experience, is quite hard to grasp, even by experienced programmers. Therefore, I will try to give you an in-depth explanation of how it works, when the compiler utilizes it, and, most importantly, why it is needed.

Essentially, the reason C++ even has the concept of move semantics, whereas most other languages don't, is a result of it being a value-based language, as discussed in Chapter 1, A Brief Introduction to C++. If C++ did not have move semantics built in, the advantages of value-based semantics would get lost in many cases and programmers would have to perform one of the following trade-offs:

  • Performing redundant deep-cloning operations with high performance costs
  • Using pointers for objects like Java does, losing the robustness of value semantics
  • Performing error-prone swapping operations at the cost of readability

We do not want any of these, so let...

You have been reading a chapter from
C++ High Performance - Second Edition
Published in: Dec 2020
Publisher: Packt
ISBN-13: 9781839216541
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images