So far, we have built several neural networks and obtained satisfactory overall performances. We have evaluated the model's performance using the loss function, which is a mathematical way to measure how wrong our predictions are. To improve the performance of a model based on neural networks, during the training process, weights are modified to try to minimize the loss function and make our predictions as correct as possible. To do this, optimizers are used: they are algorithms that regulate the parameters of the model, updating it in relation to what is returned by the loss function. In practice, optimizers shape the model in its most accurate form possible by overcoming weights: The loss function tells the optimizer when it is moving in the right or wrong direction.
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
South Africa
Thailand
Ukraine
Switzerland
Slovakia
Luxembourg
Hungary
Romania
Denmark
Ireland
Estonia
Belgium
Italy
Finland
Cyprus
Lithuania
Latvia
Malta
Netherlands
Portugal
Slovenia
Sweden
Argentina
Colombia
Ecuador
Indonesia
Mexico
New Zealand
Norway
South Korea
Taiwan
Turkey
Czechia
Austria
Greece
Isle of Man
Bulgaria
Japan
Philippines
Poland
Singapore
Egypt
Chile
Malaysia