Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Practical Real-time Data Processing and Analytics

You're reading from   Practical Real-time Data Processing and Analytics Distributed Computing and Event Processing using Apache Spark, Flink, Storm, and Kafka

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781787281202
Length 360 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Shilpi Saxena Shilpi Saxena
Author Profile Icon Shilpi Saxena
Shilpi Saxena
Saurabh Gupta Saurabh Gupta
Author Profile Icon Saurabh Gupta
Saurabh Gupta
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Title Page
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
1. Introducing Real-Time Analytics FREE CHAPTER 2. Real Time Applications – The Basic Ingredients 3. Understanding and Tailing Data Streams 4. Setting up the Infrastructure for Storm 5. Configuring Apache Spark and Flink 6. Integrating Storm with a Data Source 7. From Storm to Sink 8. Storm Trident 9. Working with Spark 10. Working with Spark Operations 11. Spark Streaming 12. Working with Apache Flink 13. Case Study

Real-time processing job on Storm


After discussing setup and configuration, let's look at an example of a real-time processing job. Here, we will discuss a very basic example of Storm, that is, word count. To implement word count in Storm, we need one spout that should emit sentences at regular intervals, one bolt to split the sentence into words based on space, one bolt that collects all the words and finds the count, and finally, we need one bolt to display the output on the console.

Let's discuss them one by one as follows:

  • Sentence spout: To create a custom spout, first you must extend the BaseRichSpout class in which you can provide implementation of that required methods. To create a fixed spout, which means that it emits the same set of sentences per iteration, create a constant string array of sentences. declareOutputFields is the method that defines the ID of the stream. This stream is the input for the bolt. nextTuple is the method that iterates over the sentence array and emits...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images