Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
R Deep Learning Cookbook

You're reading from   R Deep Learning Cookbook Solve complex neural net problems with TensorFlow, H2O and MXNet

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher Packt
ISBN-13 9781787121089
Length 288 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
PKS Prakash PKS Prakash
Author Profile Icon PKS Prakash
PKS Prakash
 Sri Krishna Rao Sri Krishna Rao
Author Profile Icon Sri Krishna Rao
Sri Krishna Rao
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Title Page
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
1. Getting Started FREE CHAPTER 2. Deep Learning with R 3. Convolution Neural Network 4. Data Representation Using Autoencoders 5. Generative Models in Deep Learning 6. Recurrent Neural Networks 7. Reinforcement Learning 8. Application of Deep Learning in Text Mining 9. Application of Deep Learning to Signal processing 10. Transfer Learning

Setting up a Deep Restricted Boltzmann Machine


Unlike DBNs, Deep Restricted Boltzmann Machines (DRBM) are undirected networks of interconnected hidden layers with the capability to learn joint probabilities over these connections. In the current setup, centering is performed where visible and hidden variables are subtracted from offset bias vectors after every iteration. Research has shown that centering optimizes the performance of DRBMs and can reach higher log-likelihood values in comparison with traditional RBMs.

Getting ready

This section provides the requirements for setting up a DRBM:

  • The MNIST dataset is loaded and set up
  • The tensorflow package is set up and loaded

How to do it...

This section covers detailed the steps for setting up the DRBM model using TensorFlow in R:

  1. Define the parameters for the DRBM:
learning_rate = 0.005
momentum = 0.005
minbatch_size = 25
hidden_layers = c(400,100)
biases = list(-1,-1)
  1. Define a sigmoid function using a hyperbolic arc tangent [(log(1+x) -log(1-x))...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images