Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds

How-To Tutorials - Artificial Intelligence

86 Articles
article-image-18-striking-ai-trends-to-watch-in-2018-part-2
Sugandha Lahoti
28 Dec 2017
12 min read
Save for later

18 striking AI Trends to watch in 2018 - Part 2

Sugandha Lahoti
28 Dec 2017
12 min read
We are back with Part 2 of our analysis of intriguing AI trends in 2018 as promised in our last post.  We covered the first nine trends in part 1 of this two-part prediction series. To refresh your memory, these are the trends we are betting on. Artificial General Intelligence may gain major traction in research. We will turn to AI enabled solution to solve mission-critical problems. Machine Learning adoption in business will see rapid growth. Safety, ethics, and transparency will become an integral part of AI application design conversations. Mainstream adoption of AI on mobile devices Major research on data efficient learning methods AI personal assistants will continue to get smarter Race to conquer the AI optimized hardware market will heat up further We will see closer AI integration into our everyday lives. The cryptocurrency hype will normalize and pave way for AI-powered Blockchain applications. Advancements in AI and Quantum Computing will share a symbiotic relationship Deep learning will continue to play a significant role in AI development progress. AI will be on both sides of the cybersecurity challenge. Augmented reality content will be brought to smartphones. Reinforcement learning will be applied to a large number of real-world situations. Robotics development will be powered by Deep Reinforcement learning and Meta-learning A rise in immersive media experiences enabled by AI. A large number of organizations will use Digital Twin Without further ado, let’s dive straight into why we think these trends are important. 10. Neural AI: Deep learning will continue to play a significant role in AI progress. Talking about AI is incomplete without mentioning Deep learning. 2017 saw a wide variety of deep learning applications emerge in diverse areas from Self-driving cars, to Beating Video Games and Go champions, to Dreaming, to Painting pictures, and making scientific discoveries. The year started with Pytorch posing a real challenge to Tensorflow, especially in research. Tensorflow countered it by releasing dynamic computation graphs in Tensorflow Fold. As deep learning frameworks became more user-friendly and accessible, and the barriers for programmers and researchers to use deep learning lowered, it increased developer acceptance. This trend will continue to grow in 2018. There would also be improvements in designing and tuning deep learning networks and for this, techniques such as automated hyperparameter tuning will be used widely. We will start seeing real-world uses of automated machine learning development popping up. Deep learning algorithms will continue to evolve around unsupervised and generative learning to detect features and structure in data. We will see high-value use cases of neural networks beyond image, audio, or video analysis such as for advanced text classification, musical genre recognition, biomedical image analysis etc. 2017 also saw ONNX standardization of neural network representations as an important and necessary step forward to interoperability. This will pave way for deep learning models to become more transparent i.e., start making it possible to explain their predictions, especially when the outcomes of these models are used to influence or inform human decisions. 2017 saw a large portion of deep learning research dedicated to GANs. In 2018, We should see implementations of some of GANs ideas, in real-world use cases such as in cyber threat detection. 2018 may also see more deep learning methods gain Bayesian equivalents and probabilistic programming languages to start incorporating deep learning. 11. Autodidact AI: Reinforcement learning will be applied to a large number of real-world situations. Reinforcement learning systems learn by interacting with the environment through observations, actions, and rewards. The historic victory of AlphaGo, this year, was a milestone for reinforcement learning techniques. Although the technique has existed for decades, the idea to combine it with neural networks to solve complex problems (such as the game of Go) made it widely popular. In 2018, we will see reinforcement learning used in real-world situations. We will also see the development of several simulated environments to increase the progress of these algorithms. A notable fact about reinforcement learning algorithms is that they are trained via simulation, which eliminates the need for labeled data entirely. Given such advantages, we can see solutions which combine Reinforcement Learning and agent-based simulation in the coming year. We can expect to see more algorithms and bots enabling edge devices to learn on their own, especially in IoT environments. These bots will push the boundaries between AI techniques such as reinforcement learning, unsupervised learning and auto-generated training to learn on their own. 12. Gray Hat AI: AI will be on both sides of the cybersecurity challenge. 2017 saw some high-profile cases of ransomware attack, the most notable being WannaCry. Cybercrime is projected to cause $6 trillion in damages by 2021. Companies now need to respond better and faster to these security breaches. Since hiring and training and reskilling people is time-consuming and expensive, companies are turning to AI to automate tasks and detect threats. 2017 saw a variety of AI in cyber sec releases. From Watson AI helping companies stay ahead of hackers and cybersecurity attacks, to Darktrace—a company by Cambridge university mathematicians—which uses AI to spot patterns and prevent cyber crimes before they occur. In 2018 we may see AI being used for making better predictions about never seen before threats. We may also hear about AI being used to prevent a complex cybersecurity attack or the use of AI in incident management. On the research side, we can expect announcements related to securing IoT. McAfee has identified five cybersecurity trends for 2018 relating to Adversarial Machine Learning, Ransomware, Serverless Apps, Connected Home Privacy, and Privacy of Child-Generated Content. 13. AI in Robotics: Robotics development will be powered by Deep Reinforcement learning and Meta-learning Deep reinforcement learning was seen in a new light, especially in the field of robotics after Pieter Abbeel’s fantastic Keynote speech at NIPS 2017.  It talked about the implementation of Deep Reinforcement Learning (DRL) in Robotics, what challenges exist and how these challenges can be overcome. DRL has been widely used to play games (Alpha Go and Atari). In 2018, deep reinforcement learning will be used to instill more human-like qualities of discernment and complex decision-making in robots. Meta-learning was another domain which gained widespread attention in 2017. We Started with  model-agnostic meta-learning, which addresses the problem of discovering learning algorithms that generalize well from very few examples. Later in the year, more research on meta-learning for few shot learning was published, using deep temporal convolutional networks and, graph neural networks among others. We're also now seeing meta-learn approaches that learn to do active learning, cold-start item recommendation, reinforcement learning, and many more. More research and real-world implementations of these algorithms will happen in 2018. 2018 may also see developments to overcome the Meta-learning challenge of requiring more computing power so that it can be successfully applied to the field of robotics. Apart from these, there would be improvements in significant other challenges such as safe learning, and value alignment for AI in robotics. 14. AI Dapps: Within the developer community, the cryptocurrency hype will normalize and pave way for AI-powered Blockchain applications. Blockchain is expected to be the storehouse for 10% of the world GDP by 2025.  With such a high market growth, Amazon announced the AWS Blockchain Partners Portal to support customers’ integration of blockchain solutions with systems built on AWS. Following Amazon’s announcement, more tech companies are expected to launch such solutions in the coming year.  Blockchain in combination with AI will provide a way for maintaining immutability in a blockchain network creating a secure ecosystem for transactions and data exchange. AI BlockChain is a digital ledger that maximizes security while remaining immutable by employing AI agents that govern the chain. And 2018, will see more such security solutions coming up. A drawback of blockchain is that blockchain mining requires a high amount of energy.  Google’s DeepMind has already proven that AI can help in optimizing energy consumption in data centers. Similar results can be achieved for blockchain as well. For example, Ethereum has come up with proof of stake, a set of algorithms which selects validators based in part on the size of their respective monetary deposits instead of rewarding participants for spending computational resources, thus saving energy. Research is also expected in the area of using AI to reduce the network latency to enable faster transactions. 15. Quantum AI: Convergence of AI in Quantum Computing Quantum computing was called one of the three path-breaking technologies that will shape the world in the coming years by Microsoft CEO, Satya Nadella. 2017 began with Google unveiling a blueprint for quantum supremacy. IBM edged past them by developing a quantum computer capable of handling 50 qubits. Then came, Microsoft with their Quantum Development Kit and a new quantum programming language. The year ended with Rigetti Computing, a startup, announcing a new quantum algorithm for unsupervised machine learning. 2018 is expected to bring in more organizations, new and old, competing to develop a quantum computer with the capacity to handle even more qubits and process data-intensive large-scale algorithms at speeds never imagined before. As more companies successfully build quantum computers, they would also use them for making substantial progress on current efforts in AI development and for finding new areas of scientific discovery. As with Rigetti, new quantum algorithms would be developed to solve complex machine learning problems. We can also see tools, languages, and frameworks such as Microsoft's Q# programming language being developed to facilitate quantum app development. 16. AI doppelgangers: A large number of organizations will use Digital Twin Digital twin, as the name suggests, is a virtual replica of a product, process or service. 2017 saw some major work going in the field of Digital twin. The most important being GE, which now has over 551,000 digital twins built on their Predix platform. SAP expanded their popular IoT platform, SAP Leonardo with a new digital twin offering. Gartner has named Digital Twin as one of the top 10 Strategic Technology Trends for 2018. Following this news, we can expect to see more organizations coming up with their own digital twins. First to, monitor and control assets, to reduce asset downtime, lower the maintenance costs and improve efficiency. And later to organize and envision more complex entities, such as cities or even human beings. These Digital twins will be infused with AI capabilities to enable advanced simulation, operation, and analysis over the digital representations of physical objects. 2018 is expected to have digital twins make steady progress and benefit city architects, digital marketers, healthcare professionals and industrial planners. 17. Experiential AI: Rise in immersive media experiences based on Artificial Intelligence. 2017 saw the resurgence of Virtual Reality thanks to advances made in AI. Facebook unveiled a standalone headset, Oculus Go, to go on sale in early 2018. Samsung added a separate controller to its Gear VR, and Google's Daydream steadily improved from the remains of Google Cardboard. 2018 will see virtual reality the way 2017 saw GANs -  becoming an accepted convention with impressive use cases but not fully deployed at a commercial scale. It won’t be limited to just creating untethered virtual reality headgears, but will also combine the power of virtual reality, artificial intelligence, and conversational platforms to build a uniquely-immersive experience. These immersive technologies will come out of conventional applications(read the gaming industry) to be used in real estate industry, travel & hospitality industry, and other segments. Intel is reportedly working on is a VR set dedicated to sports events. It allows a viewer to experience the basketball game from any seats they choose. It uses AI and big data to analyze different games happening at the same time, so they can switch to watch them immediately. Not only that, Television will start becoming a popular source of immersive experiences. The next-gen televisions will be equipped with high definition cameras, as well as AI technology to analyze a viewer's emotions as they watch shows. 18. AR AI: Augmented reality content will be brought to smartphones Augmented Reality first garnered worldwide attention with the release of Pokemon Go. Following which a large number of organizations invested in the development of AR-enabled smartphones in 2017. Most notable was Apple’s ARKit framework, which allowed developers to create augmented reality experiences for iPhone and iPad.  Following which Google launched ARCore, to create augmented reality experiences at Android scale. Then came Snapchat, which released Lens Studio, a tool for creating customizable AR effects. The latest AR innovation came from Facebook, which launched AR Studio in open beta to bring AR into the everyday life of its users through the Facebook camera. For 2018, they are planning to develop 3D digital objects for people to place onto surfaces and interact within their physical space. 2018 will further allow us to get a taste of augmented reality content through beta products set in the context of our everyday lives. A recent report published by Digi-Capital suggests that mobile AR market will be worth an astonishing $108 billion by 2021. Following this report, more e-commerce websites will engage mobile users using some form of AR content seeking inspiration from the likes of the Ikea Place AR app. Apart from these, more focus would be on building apps and frameworks which consumes less battery life and have high mobile connectivity capability. With this, we complete our list of our 18 in 18’ AI trends to watch.  We would love to know which of our AI-driven prediction surprises you the most and the trends which you agree with. Please feel free to leave a comment below with your views. Happy New Year!
Read more
  • 0
  • 0
  • 2831

article-image-how-facebook-is-advancing-artificial-intelligence-video
Richard Gall
14 Sep 2018
4 min read
Save for later

How Facebook is advancing artificial intelligence [Video]

Richard Gall
14 Sep 2018
4 min read
Facebook is playing a huge role in artificial intelligence research. It’s not only a core part of the Facebook platform, it’s central to how the organization works. The company launched its AI research lab - FAIR - back in 2013. Today, led by some of the best minds in the field, it's not only helping Facebook to leverage artificial intelligence, it's also making it more accessible to researchers and engineers around the world. Let’s take a look at some of the tools built by Facebook that are doing just that. PyTorch: Facebook's leading artificial intelligence tool PyTorch is a hugely popular deep learning framework (rivalling Google's TensorFlow) that, by combining flexiblity and dynamism with stability, bridges the gap between research and production. Using a tape-based auto-differentiation system, PyTorch can be modified and changed by engineers without losing speed. That’s good news for everyone. Although PyTorch steals the headlines, there are a range of supporting tools that are making artificial intelligence and deep learning more accessible and achievable for other engineers. Read next: Is PyTorch better than Google’s TensorFlow? Find PyTorch eBooks and videos on the Packt website.  Facebook's computer vision tools Another field that Facebook has revolutionized is computer vision and image processing. Detectron, Facebook’s state-of-the-art object detection software system, has powered many research projects including Mask R-CNN - a simple and flexible way of developing Convolution Neural Networks for image processing. Mask R-CNN has also helped to power DensePose, a tool that map all human pixels of an RGB image to a 3D surface-based representation of the human body. Facebook has also heavily contributed to research in detecting and recognizing Human-Object interactions as well. Their contribution to the field of generative modeling is equally very important, with tasks such as minimizing variations in the quality of images, JPEG compression as well as image quantization now becoming easier and more accessible. Facebook, language and artificial intelligence We share updates, we send messages - language is a cornerstone of Facebook. This is why it's such an important area for Facebook’s AI researchers. There are a whole host of libraries and tools that are built for language problems. FastText is a library for text representation and classification, while ParlAI is a platform pushing the boundaries of dialog research. The platform is focused on tackling 5 key AI tasks: question answering, sentence completion, goal-oriented dialog, chit-chat dialog, and visual dialog. The ultimate aim for ParlAI is to develop a general dialog AI. There are also a few more language tools in Facebook’s AI toolkit - Fairseq and Translate are helping with translation and text generation, while Wav2Letter is an Automatic Speech Recognition system that can be used for transcription tasks. Rational artificial intelligence for gaming and smart decision making Although Facebook isn’t known for gaming, its interest in developing artificial intelligence that can reason could have an impact on the way games are built in the future. ELF is a tool developed by Facebook that allows game developers to train and test AI algorithms in a gaming environment. ELF was used by Facebook researchers to recreate DeepMind’s AlphaGo Zero, the AI bot that has defeated Go champions. Running on a single GPU, the ELF OpenGo bot defeated four professional Go players 14-0. Impressive, right? There are other tools built by Facebook that aim to build AI into game reasoning. Torchcraft is probably the most notable example - its a library that’s making AI research on Starcraft - a strategy game - accessible to game developers and AI specialists alike. Facebook is defining the future of artificial intelligence As you can see, Facebook is doing a lot to push the boundaries of artificial intelligence. However, it’s not just keeping these tools for itself - all these tools are open source, which means they can be used by anyone.
Read more
  • 0
  • 0
  • 2804

article-image-how-we-think-ai-urge-ai-founding-fathers
Neil Aitken
31 May 2018
9 min read
Save for later

We must change how we think about AI, urge AI founding fathers

Neil Aitken
31 May 2018
9 min read
In Manhattan, nearly 15,000 Taxis make around 30 journeys each, per day. That’s nearly half a million paid trips. The yellow cabs are part of the never ending, slow progression of vehicles which churn through the streets of New York. The good news is, after a century of worsening traffic, congestion is about to be ameliorated, at least to a degree. Researchers at MIT announced this week, that they have developed an algorithm to optimise the way taxis find their customers. Their product is allegedly so efficient, it can reduce the required number of cabs (for now, the ones with human drivers) in Manhattan, by a third. That’s a non trivial improvement. The trick, apparently, is to use the cabs as a hustler might cue the ball in Pool – lining the next pick up to start where the last drop off ended. The technology behind the improvement offered by the MIT research team, is the same one that is behind most of the incredible technology news stories of the last 3 years – Artificial Intelligence. AI is now a part of most of the digital interactions we have. It fuels the recommendation engines in YouTube, Spotify and Netflix. It shows you products you might like in Google’s search results and on Amazon’s homepage. Undoubtedly, AI is the hot topic of the time – as you cannot possibly have failed to notice. How AI was created – and nearly died AI was, until recently, a long forgotten scientific curiosity, employed seriously only in Sci-Fi movies. The technology fell in to a ‘Winter’– a time when AI related projects couldn’t get funding and decision makers had given up on the technology - in the late 1980s. It was at that time that much of the fundamental work which underpins today’s AI, concepts like neural networks and backpropagation were codified. Artificial Intelligence is now enjoying a rebirth. Almost every new idea funded by Venture Capitalists has AI baked in. The potential excites business owners, especially those involved in the technology sphere, and scares governments in equal measure. It offers better profits and the potential for mass unemployment as if they are two sides of the same coin. Is is a one in a generation technology improvement, similar to Air Conditioning, mass produced motor car and the smartphone, in that it can be applied to all aspects of the economy at the same time. Just as the iPhone has propelled telecommunications technology forward, and created billions of dollars of sales for phone companies selling mobile data plans, AI is fueling totally new businesses and making existing operations significantly more efficient. Behind the fanfare associated with AI, however, lies a simple truth. Today’s AI algorithms use what’s called ‘narrow’ or ‘domain specific’ intelligence. In simple terms, each current AI implementation is specific to the job it is given. IBM trained their AI system ‘Watson’, to beat human contestants at ‘Jeopardy!’ When Google want to build an ‘AI product’ that can be used to beat a living counterpart at the Chinese board game ‘Go’, they create a new AI system. And so on. A new task requires a new AI system. Judea Pearl, inventor of Bayesian networks and Turing Awardee On AI systems that can move from predicting what will happen to what will cause something Now, one of the people behind those original concepts from the 1980s, which underpin today’s AI solutions is back with an even bigger idea which might push AI forward. Judea Pearl, Chancellor's professor of computer science and statistics at UCLA, and a distinguished visiting professor at the Technion, Israel Institute of Technology was awarded the Turing Award 30 years ago. This award was given to him for the Bayesian mathematical models, which gave modern AI its strength. Pearl’s fundamental contribution to computer science was in providing the logic and decision making framework for computers to operate under uncertainty. Some say it was he who provided the spark which thawed that AI winter. Today, he laments the current state of AI, concerned that the field has evolved very little in the last 3 decades since his important theory was presented. Pearl likens current AI implementations to simple tools which can tell you what’s likely to come next, based on the recognition of a familiar pattern. For example, a medical AI algorithm might be able to look at X-Rays of a human chest and ‘discern’ that the patient has, or does not have, lung cancer based on patterns it has learnt from its training datasets. The AI in this scenario doesn’t ‘know’ what lung cancer is or what a tumor is. Importantly, it is a very long way from understanding that smoking can cause the affliction. What’s needed in AI next, says Pearl, is a critical difference: AIs which are evolved to the point where they can determine not just what will happen next, but what will cause it. It’s a fundamental improvement, of the same magnitude as his earlier contributions. Causality – what Pearl is proposing - is one of the most basic units of scientific thought and progress. The ability to conduct a repeatable experiment, showing that A caused B, in multiple locations and have independent peers review the results is one of the fundamentals of establishing truth. In his most recent publication, ‘The Book Of Why’,  Pearl outlines how we can get AI, from where it is now, to where it can develop an understanding of these causal relationships. He believes the first step is to cement the building blocks of reality – ‘what is a lung’, ‘what is smoke’ and that we’ll be able to do in the next 10 years. Geoff Hinton, Inventor of backprop and capsule nets On AI which more closely mimics the human brain Geoff Hinton’s was the mind behind backpropagation, another of the fundamental technologies which has brought AI to the point it is at today. To progress AI, however, he says we might have to start all over again. Hinton has developed (and produced two papers for the University of Toronto to articulate) a new way of training AI systems, involving something he calls ‘Capsule Networks’ – a concept he’s been working on for 30 years, in an effort to improve the capabilities of the backpropagation algorithms he developed. Capsule networks operate in a manner similar to the human brain. When we see an image, our brains breaks it down to it’s components and processes them in parallel. Some brain neurons recognise edges through contrast differences. Others look for corners by examining the points at which edges intersect. Capsule Networks are similar, several acting on a picture at one time, identifying, for example, an ear or a nose on an animal, irrespective of the angle from which it is being viewed. This is a big deal as until now, CNNs (convolution neural networks), the set of AI algorithms that are most often used in image and video recognition systems, could recognize images as well as humans do. CNNs, however, find it hard to recognize images if their angle is changed. It’s too early to judge whether capsule networks are the key to the next step in the AI revolution, but in many tasks, Capsule Networks are identifying images faster and more accurately than current capabilities allow. Andrew Ng, Chief Scientist at Baidu On AI that can learn without humans Andrew Ng is the co-inventor of Google Brain, the team and project that Alphabet put together in 2011 to explore Artificial Intelligence. He now works for Baidu, China’s most successful search engine – analogous in size and scope to Google in the rest of the world. At the moment, he heads up Baidu’s Silicon Valley AI research facility. Beyond concerns over potential job displacement caused by AI, an issue so significant he says it is perhaps all we should be thinking about when it comes to Artificial Intelligence, he suggests that, in the future, the most progress will be made when AI systems can team themselves without human involvement. At the moment, training an AI, even on something that, to us is simple, such as what a cat looks like, is a complicated process. The procedure involves ‘supervised learning.’ It’s shown a lot of pictures (when they did this at Google, they used 10 million images), some of which are cats - labelled appropriately by humans. Once a sufficient level of ‘education’ has been undertaken, the AI can then accurately label cats, most of the time. Ng thinks supervision is problematic, he describes it as having an Achilles heel in the form of the quantity of data that is required. To go beyond current capabilities, says Ng, will require a completely new type of technology – one which can learn through ‘unsupervised learning’ -  machines learning from data that has not been classified by humans. Progress on unsupervised learning is slow. At both Baidu and Google, engineers are focussing on constrained versions of unsupervised learning such as training AI systems to learn about a human face and then using them to create a face themselves. The activity requires that the AI develops what we would call an ‘internal representation’ of a face – something which is required in any unsupervised learning. Other avenues to train without supervision include, ingeniously, pitting an AI system against a computer game – an environment in which they receive feedback (through points awarded in the game) for ‘constructive’ activities, but within which they are not taught directly by a human. Next generation AI depends on ‘scrubbing away’ existing assumptions Artificial Intelligence, as it stands will deliver economy wide efficiency improvements, the likes of which we have not seen in decades. It seems incredible to think that the field is still in its infancy when it can deliver such substantial benefits – like reduced traffic congestion, lower carbon emissions and saved time in New York Taxis. But it is. Isaac Azimov who developed his own concepts behind how Artificial Intelligence might be trained with simple rules said “Your assumptions are your windows on the world. Scrub them off every once in a while, or the light won't come in.” The author should rest assured. Between them, Pearl, Hinton and Ng are each taking revolutionary approaches to elevate AI beyond even the incredible heights it has reached, and starting without reference to the concepts which have brought us this far. 5 polarizing Quotes from Professor Stephen Hawking on artificial intelligence Toward Safe AI – Maximizing your control over Artificial Intelligence Decoding the Human Brain for Artificial Intelligence to make smarter decisions
Read more
  • 0
  • 0
  • 2717
Visually different images

article-image-how-neurips-2018-is-taking-on-its-diversity-and-inclusion-challenges
Sugandha Lahoti
06 Dec 2018
3 min read
Save for later

How NeurIPS 2018 is taking on its diversity and inclusion challenges

Sugandha Lahoti
06 Dec 2018
3 min read
This year the Neural Information Processing Systems Conference is asking serious questions to improve diversity, equity, and inclusion at NeurIPS. “Our goal is to make the conference as welcoming as possible to all.” said the heads of the new diversity and inclusion chairs introduced this year. https://twitter.com/InclusionInML/status/1069987079285809152 The Diversity and Inclusion chairs were headed by Hal Daume III, a professor from the University of Maryland and machine learning and fairness groups researcher at Microsoft Research and Katherine Heller, assistant professor at Duke University and research scientist at Google Brain. They opened up the talk by acknowledging the respective privilege that they get as a group of white man and woman and the fact that they don’t reflect the diversity of experience in the conference room, much less the world. They talk about the three major goals with respect to inclusion at NeurIPS: Learn about the challenges that their colleagues have faced. Support those doing the hard work of amplifying the voices of those who have been historically excluded. To begin structural changes that will positively impact the community over the coming years. They urged attendees to start building an environment where everyone can do their best work. They want people to: see other perspectives remember the feeling of being an outsider listen, do research and learn. make an effort and speak up Concrete actions taken by the NeurIPS diversity and inclusion chairs This year they have assembled an advisory board and run a demographics and inclusion survey. They have also conducted events such as WIML (Women in Machine Learning), Black in AI, LatinX in AI, and Queer in AI. They have established childcare subsidies and other activities in collaboration with Google and DeepMind to support all families attending NeurIPS by offering a stipend of up to $100 USD per day. They have revised their Code of Conduct, to provide an experience for all participants that is free from harassment, bullying, discrimination, and retaliation. They have added inclusion tips on Twitter offering tips and bits of advice related to D&I efforts. The conference also offers pronoun stickers (only them and they), first-time attendee stickers, and information for participant needs. They have also made significant infrastructure improvements for visa handling. They had discussions with people handling visas on location, sent out early invitation letters for visas, and are choosing future locations with visa processing in mind. In the future, they are also looking to establish a legal team for details around Code of Conduct. Further, they are looking to improve institutional structural changes that support the community, and improve the coordination around affinity groups & workshops. For the first time, NeurIPS also invited a diversity and inclusion (D&I) speaker Laura Gomez to talk about the lack of diversity in the tech industry, which leads to biased algorithms, faulty products, and unethical tech. Head over to NeurIPS website for interesting tutorials, invited talks, product releases, demonstrations, presentations, and announcements. NeurIPS 2018: Deep learning experts discuss how to build adversarially robust machine learning models NeurIPS 2018 paper: DeepMind researchers explore autoregressive discrete autoencoders (ADAs) to model music in raw audio at scale NeurIPS 2018: A quick look at data visualization for Machine learning by Google PAIR researchers [Tutorial]
Read more
  • 0
  • 0
  • 2632

article-image-get-ready-for-open-data-science-conference-2019-in-europe-and-california
Sugandha Lahoti
10 Oct 2019
3 min read
Save for later

Get Ready for Open Data Science Conference 2019 in Europe and California

Sugandha Lahoti
10 Oct 2019
3 min read
Get ready to learn and experience the very latest in data science and AI with expert-led trainings, workshops, and talks at ​ODSC West 2019 in San Francisco and ODSC Europe 2019 in London. ODSC events are built for the community and feature the most comprehensive breadth and depth of training opportunities available in data science, machine learning, and deep learning. They also provide numerous opportunities to connect, network, and exchange ideas with data science peers and experts from across the country and the world. What to expect at ODSC West 2019 ODSC West 2019 is scheduled to take place in San Francisco, California on Tuesday, Oct 29, 2019, 9:00 AM – Friday, Nov 1, 2019, 6:00 PM PDT. This year, ODSC West will host several networking events, including ODSC Networking Reception, Dinner and Drinks with Data Scientists, Meet the Speakers, Meet the Experts, and Book Signings Hallway Track. Core areas of focus include Open Data Science, Machine Learning & Deep Learning, Research frontiers, Data Science Kick-Start, AI for engineers, Data Visualization, Data Science for Good, and management & DataOps. Here are just a few of the experts who will be presenting at ODSC: Anna Veronika Dorogush, CatBoost Team Lead, Yandex Sarah Aerni, Ph.D., Director of Data Science and Engineering, Salesforce Brianna Schuyler, Ph.D., Data Scientist, Fenix International Katie Bauer, Senior Data Scientist, Reddit, Inc Jennifer Redmon, Chief Data Evangelist, Cisco Systems, Inc Sanjana Ramprasad, Machine Learning Engineer, Mya Systems Cassie Kozyrkov, Ph.D., Chief Decision Scientist, Google Rachel Thomas, Ph.D., Co-Founder, fast.ai Check out the conference’s more industry-leading speakers here. ODSC also conducts the Accelerate AI Business Summit, which brings together leading experts in AI and business to discuss three core topics: AI Innovation, Expertise, and Management. Don’t miss out on the event You can also use code ODSC_PACKT right now to exclusively save 30% before Friday on your ticket to ODSC West 2019. What to expect at ODSC Europe 2019 ODSC Europe 2019 is scheduled to take place in London, the UK on Tuesday, Nov 19, 2019 – Friday, Nov 22, 2019. Europe Talks/Workshops schedule includes Thursday, Nov 21st and Friday, Nov 22nd. It is available to Silver, Gold, Platinum, and Diamond pass holders. Europe Trainings schedule includes Tuesday, November 19th and Wednesday, November 20th. It is available to Training,  Gold ( Wed Nov 20th only), Platinum, and Diamond pass holders. Some talks scheduled to take place include ML for Social Good: Success Stories and Challenges, Machine Learning Interpretability Toolkit, Tools for High-Performance Python, The Soul of a New AI, Machine Learning for Continuous Integration, Practical, Rigorous Explainability in AI, and more. ODSC has released a preliminary schedule with information on attending speakers and their training, workshop, and talk topics. The full schedule is going to be available soon. They’ve also recently added several excellent speakers, including Manuela Veloso, Ph.D. | Head of AI Research, JP Morgan Dr. Wojciech Samek | Head of Machine Learning, Fraunhofer Heinrich Hertz Institute Samik Chandanara | Head of Analytics and Data Science, JP Morgan Tom Cronin | Head of Data Science & Data Engineering, Lloyds Banking Group Gideon Mann, Ph.D. | Head of Data Science, Bloomberg, LP There are more chances to learn, connect, and share ideas at this year’s event than ever before. Don’t miss out. Use code ODSC_PACKT right now to save 30% on your ticket to ODSC Europe 2019.
Read more
  • 0
  • 0
  • 2617

article-image-session-3-fairness-in-computer-vision-and-nlp
Sugandha Lahoti
23 Feb 2018
6 min read
Save for later

FAT Conference 2018 Session 3: Fairness in Computer Vision and NLP

Sugandha Lahoti
23 Feb 2018
6 min read
Machine learning has emerged with a vast new ecosystem of techniques and infrastructure and we are just beginning to learn their full capabilities. But with the exciting innovations happening, there are also some really concerning problems arising. Forms of bias, stereotyping and unfair determination are being found in computer vision systems, object recognition models, and in natural language processing and word embeddings. The Conference on Fairness, Accountability, and Transparency (FAT) scheduled on Feb 23 and 24 this year in New York is an annual conference dedicating to bringing theory and practice of fair and interpretable Machine Learning, Information Retrieval, NLP, Computer Vision, Recommender systems, and other technical disciplines. This year's program includes 17 peer-reviewed papers and 6 tutorials from leading experts in the field. The conference will have three sessions. Session 3 of the two-day conference on Saturday, February 24, is in the field of fairness in computer vision and NLP. In this article, we give our readers a peek into the three papers that have been selected for presentation in Session 3. You can also check out Session 1 and Session 2, in case you’ve missed them. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification What is the paper about The paper talks about substantial disparities in the accuracy of classifying darker and lighter females and males in gender classification systems. The authors have evaluated bias present in automated facial analysis algorithms and datasets with respect to phenotypic subgroups. Using the dermatologist approved Fitzpatrick Skin Type classification system, they have characterized the gender and skin type distribution of two facial analysis benchmarks, IJB-A and Adience.  They have also evaluated 3 commercial gender classification systems using this dataset. Key takeaways The paper measures accuracy of 3 commercial gender classification algorithms by Microsoft, IBM, and Face++ on the new Pilot Parliaments Benchmark which is balanced by gender and skin type. On annotating the dataset with the Fitzpatrick skin classification system and testing gender classification performance on 4 subgroups, they found : All classifiers perform better on male faces than on female faces (8.1% − 20.6% difference in error rate) All classifiers perform better on lighter faces than darker faces (11.8% − 19.2% difference in error rate) All classifiers perform worst on darker female faces (20.8% − 34.7% error rate) Microsoft and IBM classifiers perform best on lighter male faces (error rates of 0.0% and 0.3% respectively) Face++ classifiers perform best on darker male faces (0.7% error rate) The maximum difference in error rate between the best and worst classified groups is 34.4% They encourage further work to see if the substantial error rate gaps on the basis of gender, skin type and intersectional subgroup revealed in this study of gender classification persist in other human-based computer vision tasks as well. Analyze, Detect and Remove Gender Stereotyping from Bollywood Movies What is the paper about The paper studies gender stereotypes and cases of bias in the Hindi movie industry (Bollywood) and propose an algorithm to remove these stereotypes from text. The authors have analyzed movie plots and posters for all movies released since 1970. The gender bias is detected by semantic modeling of plots at sentence and intra-sentence level. Different features like occupation, introductions, associated actions and descriptions are captured to show the pervasiveness of gender bias and stereotype in movies. Next, they have developed an algorithm to generate debiased stories. The proposed debiasing algorithm extracts gender biased graphs from unstructured piece of text in stories from movies and de-bias these graphs to generate plausible unbiased stories. Key takeaways The analysis is performed at sentence at multi-sentence level and uses word embeddings by adding context vector and studying the bias in data. Data observation showed that while analyzing occupations for males and females, higher level roles are designated to males while lower level roles are designated to females. A similar trend has been observed for centrality where females were less central in the plot vs their male counterparts. Also, while predicting gender using context word vectors, with very small training data, a very high accuracy was observed in gender prediction for test data reflecting a substantial amount of bias present in the data. The authors have also presented an algorithm to remove such bias present in text. They show that by interchanging the gender of high centrality male character with a high centrality female character in the plot text, leaves no change in the story but de-biases it completely. Mixed Messages? The Limits of Automated Social Media Content Analysis What is the paper about This paper broadcasts that a knowledge gap exists between data scientists studying NLP and policymakers advocating for the wide adoption of automated social media analysis and moderation. It urges policymakers to understand the capabilities and limits of NLP before endorsing or adopting automated content analysis tools, particularly for making decisions that affect fundamental rights or access to government benefits. It draws on existing research to explain the capabilities and limitations of text classifiers for social media posts and other online content. This paper is aimed at helping researchers and technical experts address the gaps in policymakers knowledge about what is possible with automated text analysis. Key takeaways The authors have provided an overview of how NLP classifiers work and identified five key limitations of these tools that must be communicated to policymakers: NLP classifiers require domain-specific training and cannot be applied with the same reliability across different domains. NLP tools can amplify social bias reflected in language and are likely to have lower accuracy for minority groups. Accurate text classification requires clear, consistent definitions of the type of speech to be identified. Policy debates around content moderation and social media mining tend to lack such precise definitions. The accuracy achieved in NLP studies does not warrant widespread application of these tools to social media content analysis and moderation. Text filters remain easy to evade and fall far short of humans ability to parse meaning from text. The paper concludes with recommendations for NLP researchers to bridge the knowledge gap between technical experts and policymakers, including Clearly describe the domain limitations of NLP tools. Increase development of non-English training resources. Provide more detail and context for accuracy measures. Publish more information about definitions and instructions provided to annotators. Don’t miss our coverage on Session 4 and Session 5 on Fair Classification, Fat recommenders, etc.
Read more
  • 0
  • 0
  • 2611
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at $15.99/month. Cancel anytime
article-image-decoding-the-reasons-behind-alphabets-record-high-earnings-in-q2-2018
Sugandha Lahoti
25 Jul 2018
7 min read
Save for later

Decoding the reasons behind Alphabet’s record high earnings in Q2 2018

Sugandha Lahoti
25 Jul 2018
7 min read
Alphabet, Google’s parent company, saw its stock price rise quickly after it announced its Q2 2018 earning results, shocking analysts (in a good way) all over the world. Shares of Alphabet have jumped more than 5% in after-hours trading Monday, hitting a new record high. Source: NASDAQ It would seem that the EU’s fine of €4.34 billion on Google for breaching EU antitrust laws had little effect on its progress in terms of Q2 earnings. According to Ruth Porat, Google's CFO, Alphabet generated revenue of $32.66 billion during Q2 2018, compared to $26.01 billion during the same quarter last year. Excluding the fine, Alphabet still booked a net income of $3.2 billion, which equals earnings of $4.54 per share. Had the EU decision gone the other way, Alphabet would have had $32.6 billion in revenue and a profit of $8.2 billion. “We want Google to be the source you think of when you run into a problem.” - Sundar Pichai, Google CEO, in the Q2 2018 Earnings Call In Monday afternoon’s earnings call, CEO Sundar Pichai focused on three major domains that have helped Alphabet achieve its Q2 earnings. First, he claimed that machine learning and AI was becoming a crucial unifying component across all of Google's products and offerings helping to cement and consolidate its position in the market. Second, Pichai suggested that investments in computing, video, cloud and advertising platforms have helped push Google into new valuable markets. And third, the company's investment in new businesses and emerging markets was proving to be a real growth driver which should secure Google's future success. Let us look at the various facets of Google’s growth strategy that have proven to be successful this quarter. Investing in AI With the world spinning around the axis of AI, Alphabet is empowering all of its product and service offerings with AI and machine learning. At its annual developer conference earlier this year, Google I/O, Google announced new updates to their products that rely on machine learning. For example, the revamped Google news app uses machine learning to provide relevant news stories for users, and improvements to Google assistant also helped the organization strengthen its position in that particular market. (By the end of 2018, it will be available in more than 30 languages in 80 countries.) This is another smart move by Alphabet in its plan to make information accessible to all while generating more revenue-generating options for themselves and expanding their partnerships to new vendors and enterprise clients. Google Translate also saw a huge bump in volume especially during the World Cup, as fans all over the world traveled to Russia to witness the football gala. Another smart decision was adding updates to Google Maps. This has achieved a 50% year-on-year growth in Indonesia, India, and Nigeria, three very big and expanding markets. Defending its Android ecosystem and business model The first Android Phone arrived in 2008. The project was built on the simple idea of a mobile platform that was free and open to everyone. Today, there are more than 24,000 Android-powered devices from over 1400 phone manufacturers. Google’s decision to build a business model that encourages this open ecosystem to thrive has been a clever strategy. It not only generates significant revenue for the company but it also brings a world of developers and businesses into its ecosystem. It's vendor lock-in with a friendly face. Of course, with the EU watching closely, Google has to be careful to follow regulation. Failure to comply could mean the company would face penalty payments of up to 5% of its average daily worldwide turnover of Alphabet. According to Brian Wieser, an analyst at Pivotal Research Group, however, “There do not appear to be any signs that should cause a meaningful slow down anytime soon, as fines from the EU are not likely to hamper Alphabet’s growth rate. Conversely, regulatory changes such as GDPR in Europe (and similar laws implemented elsewhere) could have the effect of reinforcing Alphabet’s growth.” Forming new partnerships Google has always been very keen to form new partnerships and strategic alliances with a wide variety of companies and startups. It has been very smart in systematically looking for partners that will complement their strengths and bring the end product to the market. Partnering also provides flexibility; instead of developing new solutions and tools in-house, Google can instead bring interesting innovations into the Google ecosystem simply thanks to its financial clout. For example, Google has partnered with many electronic companies to expand the number of devices compatible with Google assistant. Furthermore, its investment in computing platforms and AI has also helped the organization to generate considerable momentum in their Made by Google hardware business across Pixel, Home, Nest, and Chromecast. Interestingly, we also saw an acceleration in business adoption of Chromebooks. Chromebooks are the most cost-efficient and secure way for businesses to enable their employees to work in the cloud. The unit sales of managed Chromebooks in Q2 grew by more than 175% year-on-year. “Advertising on Youtube has always been an incredibly strong and growing source of income for its creators. Now Google is also building new ways for creators to source income such as paid channel memberships, merchandise shelves on Youtube channels, and endorsements opportunities through Famebit.”, said Pichai. Famebit is a startup they acquired in 2016 which uses data analytics to build tools to connect brands with the right creators. This acquisition proved to be quite successful as almost half of the creators that used Famebit in 2018 doubled their revenue in the first 3 months. Google has also made significant strides in developing new shopping and commerce partnerships such as with leading global retailers like Carrefour, designed to give people the power to shop wherever and however they want. Such collaborations are great for Google as it brings their shopping, ads, and cloud products under one hood. The success of Google Cloud’s vertical strategy and customer-centric approach was illustrated by key wins including Domino's Pizza, Soundcloud, and PwC moving to GCP this quarter. Target, the chain of department store retailers in the US, is also migrating key areas of it’s business to GCP. AirAsia has also expanded its relationship with Google for using ML and data analytics. This shows that the cloud business is only going to grow further. Further, Google Cloud Platform catering to clients from across very different industries and domains signals a robust way to expand their cloud empire. Supporting future customers Google is not just thinking about its current customer base but also working on specialized products to support the next wave of people which are coming online for the first time, enabled the rise in accessibility of mobile devices. They have established high-speed public WiFi in 400 train stations in India in collaboration with the Indian railways and proposed the system in Indonesia and Mexico as well. They have also announced Google AI research center in Ghana Africa to spur AI innovation with researchers and engineers from Africa. They have also expanded the Google IT support professional certificate program to more than 25 community colleges in the US. This massive uproar by Alphabet even in the midst of EU antitrust case was the most talked about news among Wall Street analysts. Most of them consider it to be buy-in terms of stocks. For the next quarter, Google wants to continue fueling its growing cloud business “We are investing for the long run.” Pichai said. They also don’t plan to dramatically alter their Android strategy and continue to give the OS for free. Pichai said, “I’m confident that we will find a way to make sure Android is available at scale to users everywhere.” A quick look at E.U.’s antitrust case against Google’s Android Is Google planning to replace Android with Project Fuchsia? Google Cloud Launches Blockchain Toolkit to help developers build apps easily
Read more
  • 0
  • 0
  • 2485

article-image-3-tips-to-build-your-own-interactive-conversational-app
Guest Contributor
07 Mar 2019
10 min read
Save for later

Rachel Batish's 3 tips to build your own interactive conversational app

Guest Contributor
07 Mar 2019
10 min read
In this article, we will provide 3 tips for making an interactive conversational application using current chat and voice examples. This is an excerpt from the book Voicebot and Chatbot Design written by Rachel Batish. In this book, the author shares her insights into cutting-edge voice-bot and chatbot technologies Help your users ask the right questions Although this sounds obvious, it is actually crucial to the success of your chatbot or voice-bot. I learned this when I initially set up my Amazon Echo device at home. Using a complementary mobile app, I was directed to ask Alexa specific questions, to which she had good answers to, such as “Alexa, what is the time?” or “Alexa, what is the weather today?” I immediately received correct answers and therefore wasn’t discouraged by a default response saying, “Sorry, I don’t have an answer to that question.” By providing the user with successful experience, we are encouraging them to trust the system and to understand that, although it has its limitations, it is really good in some specific details. Obviously, this isn’t enough because as time passes, Alexa (and Google) continues to evolve and continues to expand its support and capabilities, both internally and by leveraging third parties. To solve this discovery problem, some solutions, like Amazon Alexa and Google Home, send a weekly newsletter with the highlights of their latest capabilities. In the email below, Amazon Alexa is providing a list of questions that I should ask Alexa in my next interaction with it, exposing me to new functionalities like donation. From the Amazon Alexa weekly emails “What’s new with Alexa?” On the Google Home/Assistant, Google has also chosen topics that it recommends its users to interact with. Here, as well, the end user is exposed to new offerings/capabilities/knowledge bases, that may give them the trust needed to ask similar questions on other topics. From the Google Home newsletter Other chat and voice providers can also take advantage of this email communication idea to encourage their users to further interact with their chatbots or voice-bots and expose them to new capabilities. The simplest way of encouraging usage is by adding a dynamic ‘welcoming’ message to the chat voice applications, that includes new features that are enabled. Capital One, for example, updates this information every now and then, exposing its users to new functionalities. On Alexa, it sounds like this: “Welcome to Capital One. You can ask me for things like account balance and recent transactions.” Another way to do this – especially if you are reaching out to a random group of people – is to initiate discovery during the interaction with the user (I call this contextual discovery). For example, a banking chatbot offers information on account balances. Imagine that the user asks, “What’s my account balance?” The system gives its response: “Your checking account balance is $5,000 USD.” The bank has recently activated the option to transfer money between accounts. To expose this information to its users, it leverages the bot to prompt a rational suggestion to the user and say, “Did you know you can now transfer money between accounts? Would you like me to transfer $1,000 to your savings account?” As you can see, the discovery process was done in context with the user’s actions. Not only does the user know that he/she can now transfer money between two accounts, but they can also experience it immediately, within the relevant context. To sum up tip #1, by finding the direct path to initial success, your users will be encouraged to further explore and discover your automated solutions and will not fall back to other channels. The challenge is, of course, to continuously expose users to new functionalities, made available on your chatbots and voice-bots, preferably in a contextual manner. Give your bot a ‘personality’, but don’t pretend it’s a human Your bot, just like any digital solution you provide today, should have a personality that makes sense for your brand. It can be visual, but it can also be enabled over voice. Whether it is a character you use for your brand or something created for your bot, personality is more than just the bot’s icon. It’s the language that it ‘speaks’, the type of interaction that it has and the environment it creates. In any case, don’t try to pretend that your bot is a human talking with your clients. People tend to ask the bot questions like “are you a bot?” and sometimes even try to make it fail by asking questions that are not related to the conversation (like asking how much 30*4,000 is or what the bot thinks of *a specific event*). Let your users know that it’s a bot that they are talking to and that it’s here to help. This way, the user has no incentive to intentionally trip up the bot. ICS.ai have created many custom bots for some of the leading UK public sector organisations like county councils, local governments and healthcare trusts. Their conversational AI chat bots are custom designed by name, appearance and language according to customer needs. Chatbot examples Below are a few examples of chatbots with matching personalities. Expand your vocabulary with a word a day (Wordsworth) The Wordsworth bot has a personality of an owl (something clever), which fits very well with the purpose of the bot: to enrich the user’s vocabulary. However, we can see that this bot has more than just an owl as its ‘presenter’, pay attention to the language and word games and even the joke at the end. Jokes are a great way to deliver personality. From these two screenshots only, we can easily capture a specific image of this bot, what it represents and what it’s here to do. DIY-Crafts-Handmade FB Messenger bot The DIY-Crafts-Handmade bot has a different personality, which signals something light and fun. The language used is much more conversational (and less didactic) and there’s a lot of usage of icons and emojis. It’s clear that this bot was created for girls/women and offers the end user a close ‘friend’ to help them maximize the time they spend at home with the kids or just start some DIY projects. Voicebot examples One of the limitations around today’s voice-enabled devices is the voice itself. Whereas Google and Siri do offer a couple of voices to choose from, Alexa is limited to only one voice and it’s very difficult to create that personality that we are looking for. While this problem probably will be solved in the future, as technology improves, I find insurance company GEICO’s creativity around that very inspiring. In its effort to keep Gecko’s unique voice and personality, GEICO has incorporated multiple MP3 files with a recording of Gecko’s personalized voice. https://www.youtube.com/watch?v=11qo9a1lgBE GEICO has been investing for years in Gecko’s personalization. Gecko is very familiar from TV and radio advertisements, so when a customer activates the Alexa app or Google Action, they know they are in the right place. To make this successful, GEICO incorporated Gecko’s voice into various (non-dynamic) messages and greetings. It also handled the transition back to the device’s generic voice very nicely; after Gecko has greeted the user and provided information on what they can do, it hands it back to Alexa with every question from the user by saying, “My friend here can help you with that.” This is a great example of a cross-channel brand personality that comes to life also on automated solutions such as chatbots and voice-bots. Build an omnichannel solution – find your tool Think less on the design side and more on the strategic side, remember that new devices are not replacing old devices; they are only adding to the big basket of channels that you must support. Users today are looking for different services anywhere and anytime. Providing a similar level of service on all the different channels is not an easy task, but it will play a big part in the success of your application. There are different reasons for this. For instance, you might see a spike in requests coming from home devices such as Amazon Echo and Google Home during the early morning and late at night. However, during the day you will receive more activities from FB Messenger or your intelligent assistant. Different age groups also consume products from different channels and, of course, geography impacts as well. Providing cross-channel/omnichannel support doesn’t mean providing different experiences or capabilities. However, it does mean that you need to make that extra effort to identify the added value of each solution, in order to provide a premium, or at least the most advanced, experience on each channel. Building an omnichannel solution for voice and chat Obviously, there are differences between a chatbot and a voice-bot interaction; we talk differently to how we write and we can express ourselves with emojis while transferring our feelings with voice is still impossible. There are even differences between various voice-enabled devices, like Amazon Alexa and Google Assistant/Home and, of course, Apple’s HomePod. There are technical differences but also behavioral ones. The HomePod offers a set of limited use cases that businesses can connect with, whereas Amazon Alexa and Google Home let us create our own use cases freely. In fact, there are differences between various Amazon Echo devices, like the Alexa Show that offers a complimentary screen and the Echo Dot that lacks in screen and sound in comparison. There are some developer tools today that offer multi-channel integration to some devices and channels. They are highly recommended from a short and long-term perspective. Those platforms let bot designers and bot builders focus on the business logic and structure of their bots, while all the integration efforts are taken care of automatically. Some of those platforms focus on chat and some of them on voice. A few tools offer a bridge between all the automated channels or devices. Among those platforms, you can find Conversation.one (disclaimer: I’m one of the founders), Dexter and Jovo. With all that in mind, it is clear that developing a good conversational application is not an easy task. Developers must prove profound knowledge of machine learning, voice recognition, and natural language processing. In addition to that, it requires highly sophisticated and rare skills, that are extremely dynamic and flexible. In such a high-risk environment, where today’s top trends can skyrocket in days or simply be crushed in just a few months, any initial investment can be dicey. To know more trips and tricks to make a successful chatbot or voice-bot, read the book Voicebot and Chatbot Design by Rachel Batish. Creating a chatbot to assist in network operations [Tutorial] Building your first chatbot using Chatfuel with no code [Tutorial] Conversational AI in 2018: An arms race of new products, acquisitions, and more
Read more
  • 0
  • 0
  • 2482

article-image-roger-mcnamee-on-silicon-valleys-obsession-for-building-data-voodoo-dolls
Savia Lobo
05 Jun 2019
5 min read
Save for later

Roger McNamee on Silicon Valley’s obsession for building “data voodoo dolls”

Savia Lobo
05 Jun 2019
5 min read
The Canadian Parliament's Standing Committee on Access to Information, Privacy and Ethics hosted the hearing of the International Grand Committee on Big Data, Privacy and Democracy from Monday May 27 to Wednesday May 29.  Witnesses from at least 11 countries appeared before representatives to testify on how governments can protect democracy and citizen rights in the age of big data. This section of the hearing, which took place on May 28, includes Roger McNamee’s take on why Silicon Valley wants to build data voodoo dolls for users. Roger McNamee is the Author of Zucked: Waking up to the Facebook Catastrophe. His remarks in this section of the hearing builds on previous hearing presentations by Professor Zuboff, Professor Park Ben Scott and the previous talk by Jim Balsillie. Roger McNamee’s remarks build on previous hearing presentations by Professor Zuboff, Professor Park Ben Scott and the previous talk by Jim Balsillie. He started off by saying, “Beginning in 2004, I noticed a transformation in the culture of Silicon Valley and over the course of a decade customer focused models were replaced by the relentless pursuit of global scale, monopoly, and massive wealth.” McNamee says that Google wants to make the world more efficient, they want to eliminate user stress that results from too many choices. Now, Google knew that society would not permit a business model based on denying consumer choice and free will, so they covered their tracks. Beginning around 2012, Facebook adopted a similar strategy later followed by Amazon, Microsoft, and others. For Google and Facebook, the business is behavioral prediction using which they build a high-resolution data avatar of every consumer--a voodoo doll if you will. They gather a tiny amount of data from user posts and queries; but the vast majority of their data comes from surveillance, web tracking, scanning emails and documents, data from apps and third parties, and ambient surveillance from products like Alexa, Google assistant, sidewalk labs, and Pokemon go. Google and Facebook used data voodoo dolls to provide their customers who are marketers with perfect information about every consumer. They use the same data to manipulate consumer choices just as in China behavioral manipulation is the goal. The algorithms of Google and Facebook are tuned to keep users on site and active; preferably by pressing emotional buttons that reveal each user's true self. For most users, this means content that provokes fear or outrage. Hate speech, disinformation, and conspiracy theories are catnip for these algorithms. The design of these platforms treats all content precisely the same whether it be hard news from a reliable site, a warning about an emergency, or a conspiracy theory. The platforms make no judgments, users choose aided by algorithms that reinforce past behavior. The result is, 2.5 billion Truman shows on Facebook each a unique world with its own facts. In the U.S. nearly 40% of the population identifies with at least one thing that is demonstrably false; this undermines democracy. “The people at Google and Facebook are not evil they are the products of an American business culture with few rules where misbehavior seldom results in punishment”, he says. Unlike industrial businesses, internet platforms are highly adaptable and this is the challenge. If you take away one opportunity they will move on to the next one and they are moving upmarket getting rid of the middlemen. Today, they apply behavioral prediction to advertising but they have already set their sights on transportation and financial services. This is not an argument against undermining their advertising business but rather a warning that it may be a Pyrrhic victory. If a user’s goals are to protect democracy and personal liberty, McNamee tells them, they have to be bold. They have to force a radical transformation of the business model of internet platforms. That would mean, at a minimum banning web tracking, scanning of email and documents, third party commerce and data, and ambient surveillance. A second option would be to tax micro targeted advertising to make it economically unattractive. But you also need to create space for alternative business models using trust that longs last. Startups can happen anywhere they can come from each of your countries. At the end of the day, though the most effective path to reform would be to shut down the platforms at least temporarily as Sri Lanka did. Any country can go first. The platform's have left you no choice the time has come to call their bluff companies with responsible business models will emerge overnight to fill the void. McNamee explains, “when they (organizations) gather all of this data the purpose of it is to create a high resolution avatar of each and every human being. Doesn't matter whether they use their systems or not they collect it on absolutely everybody. In the Caribbean, Voodoo was essentially this notion that you create a doll, an avatar, such that you can poke it with a pin and the person would experience that pain right and so it becomes literally a representation of the human being.” To know more you can listen to the full hearing video titled, “Meeting No. 152 ETHI - Standing Committee on Access to Information, Privacy and Ethics” on ParlVU. Experts present most pressing issues facing global lawmakers on citizens’ privacy, democracy and rights to freedom of speech Time for data privacy: DuckDuckGo CEO Gabe Weinberg in an interview with Kara Swisher Over 19 years of ANU(Australian National University) students’ and staff data breached
Read more
  • 0
  • 0
  • 2415

article-image-questions-tensorflow-2-0-tf-prebuilt-binaries-tensorboard-keras-python-support
Sugandha Lahoti
10 Dec 2019
5 min read
Save for later

#AskTensorFlow: Twitterati ask questions on TensorFlow 2.0 - TF prebuilt binaries, Tensorboard, Keras, and Python support

Sugandha Lahoti
10 Dec 2019
5 min read
TensorFlow 2.0 was released recently with tighter integration with Keras, eager execution enabled by default, three times faster training performance, a cleaned-up API, and more.  TensorFlow 2.0 had a major API Cleanup. Many API symbols are removed or renamed for better consistency and clarity. It now enables eager execution by default which effectively means that your TensorFlow code runs like numpy code. Keras has been introduced as the main high-level API to enable developers to easily leverage Keras’ various model-building APIs. TensorFlow 2.0 also has the SavedModel API that allows you to save your trained Machine learning model into a language-neutral format.  In May, Paige Bailey, Product Manager (TensorFlow) and Laurence Moroney,  Developer Advocate at Google sat down to discuss frequently asked questions on TensorFlow 2.0. They talked about TensorFlow prebuilt binaries, the TF 2.0 upgrade script, Tensorflow Datasets, and Python support. Can I ask about any prebuilt binary for the RTX 2080 GPU on Ubuntu 16?  Prebuilt binaries for TensorFlow tend to be associated with a specific driver from Nvidia. If you're taking a look at any of the prebuilt binaries, take a look at what driver or what version of the driver you have supported on that specific card. It's easy for you to go to the driver vendor and download the latest version. But that may not be the one that TensorFlow is built for or the one that it supports. So, just make sure that they actually match each other.  Do my TensorFlow scripts work with TensorFlow 2.0?  Generally, TensorFlow scripts do not work with TensorFlow 2.0. But TensorFlow 2.0 has created an upgrade utility that is automatically downloaded with TensorFlow 2.0. For more information, you can check out this medium blog post that Paige and her colleague Anna created. It shows how you can upgrade script on an end file - any arbitrary Python file or even Jupyter Notebooks. It'll give you an export.txt file that shows you all of the symbol renames, the added keywords, and then some manual changes.  When will TensorFlow be supported in Python 3.7 and hence be accessed in Anaconda 3? TensorFlow has made the commitment that as of January 1, 2020, they no longer support Python 2. They are firmly committed to Python 3 and Python 3 support.  Is it possible to run Tensorboard on colabs? You can run Tensorboard on colabs and do different operations like smoothing, changing some of the values, and using the embedding visualizer directly from your collab notebook in order to understand accuracies and to be able to model performance debugging. You also don't have to specify ports which means you need not remember to have multiple tensor board instances running. Tensorboard automatically selects one that would be a good candidate.  How would you use [TensorFlow’s] feature_columns with Keras? TensorFlow's feature_columns API is quite useful for non-numerical feature processing. Feature columns are a way of getting your data efficiently into Estimators and you can use them in Keras. TensorFlow 2.0 also has a migration guide if you wanted to migrate your models from using Estimators to being more of a TensorFlow 2.0 format with Keras.   What are some simple data sets for testing and comparing different training methods for artificial neural networks? Are there any in TensorFlow 2.0? Although MNIST and Fashion-MNIST are great, TensorFlow 2.0 also has TensorFlow Datasets which provide a collection of datasets ready to use with TensorFlow. It handles downloading and preparing the data and constructing a tf.data. TensorFlow Datasets is compatible with both TensorFlow Eager mode and Graph mode. Also, you can use them with all of your deep learning and machine learning models with just a few lines of code.  What about all the web developers who are new to AI, how does TensorFlow 2.0 help them get started? With TensorFlow 2.0, the web models that you create using saved model can be deployed to TFLite, or TensorFlow.js. The Keras layers are also supported in TensorFlow.js, so it's not just for Python developers but also for JS developers or even R developers.  You can watch Paige and Lawrence answering more questions in this three-part video series available on YouTube. Some of the other  questions asked were: Is there any TensorFlow.js transfer learning example for object detection? Are you going to publish the updated version of TensorFlow from Poets tutorial from Pete Warden implementing TF2.0. TFLite 2.0 and NN-API for faster inference on Android devices equipped with NPU/DSP? Will the frozen graph generated from TF 1.x work on TF 2.0? Which is the preferred format for saving the model GOIU forward saved_model (SM) or hd5? What is the purpose of keeping Estimators and Keras as separate APIs?  If you want to quickly start with building machine learning projects with TensorFlow 2.0, read our book TensorFlow 2.0 Quick Start Guide by Tony Holdroyd. In this book, you will get acquainted with some new practices introduced in TensorFlow 2.0. You will also learn to train your own models for effective prediction, using high-level Keras API.  TensorFlow.js contributor Kai Sasaki on how TensorFlow.js eases web-based machine learning application development Introducing Spleeter, a Tensorflow based python library that extracts voice and sound from any music track. TensorFlow 2.0 released with tighter Keras integration, eager execution enabled by default, and more! Brad Miro talks TensorFlow 2.0 features and how Google is using it internally
Read more
  • 0
  • 0
  • 2302
article-image-2018-new-year-resolutions-algorithmic-world-part-1-of-3
Sugandha Lahoti
03 Jan 2018
6 min read
Save for later

2018 new year resolutions to thrive in an Algorithmic World - Part 1 of 3

Sugandha Lahoti
03 Jan 2018
6 min read
We often think of Data science and machine learning as skills essential to a niche group of researchers, data scientists, and developers. But the world as we know today revolves around data and algorithms, just as it used to revolve around programming a decade back. As data science and algorithms get integrated into all aspects of businesses across industries, data science like Microsoft Excel will become ubiquitous and will serve as a handy tool which makes you better at your job no matter what your job is. Knowing data science is key to having a bright career in this algoconomy (algorithm driven economy). If you are big on new year resolutions, make yourself a promise to carve your place in the algorithm-powered world by becoming data science savvy. Follow these three resolutions to set yourself up for a bright data-driven career. Get the foundations right: Start with the building blocks of data science, i.e. developing your technical skills. Stay relevant: Keep yourself updated on the latest developments in your field and periodically invest in reskilling and upskilling. Be mindful of your impact: Finally, always remember that your work has real-world implications. Choose your projects wisely and your project goals, hypotheses, and contributors with even more care. In this three-part series, we expand on how data professionals could go about achieving these three resolutions. But the principles behind the ideas are easily transferable to anyone in any job. Think of them as algorithms that can help you achieve your desired professional outcome! You simply need to engineer the features and fine-tune the hyperparameters specific to your industry and job role. 1st Resolution: Learn the building blocks of data science If you are interested in starting a career in data science or in one that involves data, here is a simple learning roadmap for you to develop your technical skills. Start off with learning a data-friendly programming language, one that you find easy and interesting. Next, brush up your statistics skills. Nothing fancy, just your high school math and stats would do nicely. Next, learn about algorithms - what they do, what questions they answer, how many types are there and how to write one. Finally, you can put all that learning to practice by building models on top of your choice of Machine Learning framework. Now let’s see, how you can accomplish each of these tasks 1. Learn Python or any another popular data friendly programming language you find interesting (Learning period: 1 week - 2 months) If you see yourself as a data scientist in the near future, knowing a programming language is one of the first things to check off your list. We suggest you learn a data-friendly programming language like Python or R. Python is a popular choice because of its strong, fast, and easy computational capabilities for the Data Science workflow. Moreover, because of a large and active community, the likelihood of finding someone in your team or your organization who knows Python is quite high, which is an added advantage. “Python has become the most popular programming language for data science because it allows us to forget about the tedious parts of programming and offers us an environment where we can quickly jot down our ideas and put concepts directly into action.” - Sebastian Raschka We suggest learning the basics from the book Learn Python in 7 days by Mohit, Bhaskar N. Das. Then you can move on to learning Python specifically for data science with Python Data Science Essentials by Alberto Boschetti. Additionally, you can learn R, which is a highly useful language when it comes to statistics and data. For learning R, we recommend R Data science Essentials by Raja B. Koushik. You can learn more about how Python and R stand against each other in the data science domain here. Although R and Python are the most popular choices for new developers and aspiring data scientists, you can also use Java for data science, if that is your cup of tea. Scala is another alternative. 2. Brush up on Statistics (Learning period: 1 week - 3 weeks) While you are training your programming muscle, we recommend that you brush through basic mathematics (probability and statistics). Remember, you already know everything to get started with data science from your high school days. You just need to refresh your memory with a little practice. A good place to start is to understand concepts like standard deviation, probability, mean, mode, variance, kurtosis among others. Now, your normal high-school books should be enough to get started, however, an in-depth understanding is required to leverage the power of data science. We recommend the book Statistics for Data Science by James D. Miller for this. 3. Learn what machine learning algorithms do and which ones to learn (Learning period: 1 month - 3 months) Machine Learning is a powerful tool to make predictions based on huge amounts of data. According to a recent study, in the next ten years, ML algorithms are expected to replace a quarter of the jobs across the world, in fields like transport, manufacturing, architecture, healthcare and many others. So the next step in your data science journey is learning about machine learning algorithms. There are new algorithms popping up almost every day. We’ve collated a list of top ten algorithms that you should learn to effectively design reliable and robust ML systems. But fear not, you don’t need to know all of them to get started. Start with some basic algorithms that are majorly used in the real world applications like linear regression, naive bayes, and decision trees. 4. Learn TensorFlow, Keras, or any other popular machine learning framework (Learning period: 1 month - 3 months) After you have familiarized yourself with some of the machine learning algorithms, it is time you put that learning to practice by building models based on those algorithms. While there are many cloud-based machine learning options that have click-based model building features available, the best way to learn a skill is to get your hands dirty. There is a growing range of frameworks that make it easy to build complex models while allowing for high degrees of customization. Here is a list of top 10 deep learning frameworks at your disposal to choose from. Our favorite pick is TensorFlow. It’s Python-based, backed by Google, has a very good documentation, and there are tons of tutorials and videos available on the internet to guide you. You can find a comprehensive list of books for learning Tensorflow here. We also recommend learning Keras, which is a good option if you have some knowledge of Python programming and want to get started with deep learning. Try the book Deep Learning with Keras, by Antonio Gulli and Sujit Pal, to get you started. If you find learning from multiple sources daunting, just learn from Sebastian Raschka’s Python machine learning book.   Once you have got your fundamentals right, it is important to stay relevant through continuous learning and reskilling. Check out part 2 where we explore how you could about doing this in a systematic and time efficient manner. In part 3, we look at ways you can own your work and become aware of its outcome.
Read more
  • 0
  • 0
  • 2177

article-image-3-ways-use-structures-machine-learning-lise-getoor-nips-2017
Sugandha Lahoti
08 Dec 2017
11 min read
Save for later

3 great ways to leverage Structures for Machine Learning problems by Lise Getoor at NIPS 2017

Sugandha Lahoti
08 Dec 2017
11 min read
Lise Getoor is a professor in the Computer Science Department, at the University of California, Santa Cruz. She has a PhD in Computer Science from Stanford University. She has spent a lot of time studying machine learning, reasoning under uncertainty, databases, data science for social good, artificial intelligence This article attempts to bring our readers to Lisa’s Keynote speech at NIPS 2017. It highlights how structures can be unreasonably effective and the ways to leverage structures in Machine learning problems. After reading this article, head over to the NIPS Facebook page for the complete keynote. All images in this article come from Lisa’s presentation slides and do not belong to us. Our ability to collect, manipulate, analyze, and act on vast amounts of data is having a profound impact on all aspects of society. Much of this data is heterogeneous in nature and interlinked in a myriad of complex ways. This Data is Multimodal (it has different kinds of entities), Multi-relational (it has different links between things), and Spatio-Temporal (it involves space and time parameters). This keynote explores how we can exploit the structure that's in the input as well as the output of machine learning algorithms. A large number of structured problems exists in the fields of NLP and computer vision, computational biology, computational social sciences, knowledge graph extraction and so on. According to Dan Roth, all interesting decisions are structured i.e. there are dependencies between the predictions. Most ML algorithms take this nicely structured data and flatten it put it in a matrix form, which is convenient for our algorithms. However, there is a bunch of different issues with it. The most fundamental issue with the matrix form is that it assumes incorrect independence. Further, in the context of structure and outputs, we’re unable to apply the collective reasoning about the predictions we made for different entries in this matrix. Therefore we need to have ways where we can declaratively talk about how to transform the structure into features. This talk provides us with patterns, tools, and templates for dealing with structures in both inputs and outputs.   Lisa has covered three topics for solving structured problems: Patterns, Tools, and Templates. Patterns are used for simple structured problems. Tools help in getting patterns to work and in creating tractable structured problems. Templates build on patterns and tools to solve bigger computational problems. [dropcap]1[/dropcap] Patterns They are used for naively simple structured problems. But on encoding them repeatedly, one can increase performance by 5 or 10%. We use Logical Rules to capture structure in patterns. These logical structures capture structure, i.e. they give an easy way of talking about entities and links between entities. They also tend to be interpretable. There are three basic patterns for structured prediction problems: Collective Classification, Link Prediction, Entity Resolution. [toggle title="To learn more about Patterns, open this section" state="close"] Collective Classification Collective classification is used for inferring the labels of nodes in a graph. The pattern for expressing this in logical rules is [box type="success" align="" class="" width=""]local - predictor (x, l) → label (x, l) label (x, l) & link(x,y) → label (y,l)[/box] It is called as collective classification as the thing to predict i.e. the label, occurs on both sides of the rule. Let us consider a toy problem: We have to predict unknown labels here (marked in grey) as to what political party the unknown person will vote for. We apply logical rules to the problem. Local rules: [box type="success" align="" class="" width=""]“If X donates to part P, X votes for P” “If X tweets party P slogans, X votes for P”[/box] Relational rules: [box type="success" align="" class="" width=""]“If X is linked to Y, and X votes for P, Y votes for P” Votes (X,P) & Friends (X,Y) → Votes (Y, P) Votes (X,P) & Spouse (X,Y) → Votes (Y, P)[/box] The above example shows the local and relational rules applied to the problem based on collective classification. Adding a collective classifier like this to other problems yields significant improvement. Link Prediction Link Prediction is used for predicting links or edges in a graph. The pattern for expressing this in logical rules is : [box type="success" align="" class="" width=""]link (x,y) & similar (y,z) →  link (x,y)[/box] For example, consider a basic recommendation system. We apply logical rules of link prediction to express likes and similarities. So, how you infer one link is gonna give you information about another link. Rules express: [box type="success" align="" class="" width=""]“If user U likes item1, and item2 is similar to item1, user U likes item2” Likes (U, I1) & SimilarItem (I1, I2) → Likes(U, I2) “If user1  likes item I, and user2 is similar to user1, user2 likes item I” Likes (U1, I) & SimilarUser (U1, U2) → Likes(U2, I)[/box] Entity Resolution Entity Resolution is used for determining which nodes refer to the same underlying entity. Here we use local rules between how similar things are, for instance, how similar their names or links are [box type="success" align="" class="" width=""]similar - name (x,y) → same (x,y) similar - links (x,y) → same (x,y)[/box] There are two collective rules. One is based on transitivity. [box type="success" align="" class="" width=""]similar - name (x,y) → same (x,y) similar - links (x,y) → same (x,y) same (x,y) && same(y,z) → same (x,z)[/box] The other is based on matching i.e. dependence on both sides of the rule. [box type="success" align="" class="" width=""]similar - name (x,y) → same (x,y) similar - links (x,y) → same (x,y) same (x,y) & ! same (y,z) → ! same (x,z)[/box] The logical rules as described above though being quite helpful, have certain disadvantages. They are intractable, can’t handle inconsistencies, and can’t represent degrees of similarity.[/toggle] [dropcap]2[/dropcap] Tools Tools help in making the structured kind of problems tractable and in getting patterns to work. The tools come from the Statistical Relational Learning community.  Lise adds another one to this mix of languages - PSL. PSL is probabilistic logical programming, a declarative language for expressing collective inference problems. To know more: psl.linqs.org Predicate = relationship or property Ground Atom = (continuous) random variable Weighted Rules = capture dependency or constraint PSL Program = Rules + Input DB PSL makes reasoning scalable by mapping Logical inference to Convex optimization. The language takes logical rules and assign weights to them and then uses it to define a distribution for the unknown variables. One of the striking features here is that the random variables have continuous values. The work done pertaining to the PSL language turns the disadvantages of logical rules into advantages. So they are tractable, can handle inconsistencies, and can represent similarity. The key idea is to convert the clauses to concave functions. To be tractable, we relax it to a concave maximization. PSL has semantics from three different worlds: Randomized algorithms from the Computer science community, Probabilistic graphical models from the Machine Learning community, and Soft Logic from the AI community. [toggle title="To learn more about PSL, open this section" state="close"] Randomized Algorithm In this setting, we have a weighted rule. We have nonnegative weights and then a set of weighted logical rules in clausal form. Weighted Max SAT is a classical problem where we attempt to find the assignment to the random variables that maximize the weights of the satisfied rules. However, this problem is NP-HARD (which is a computational complexity theory for non-deterministic polynomial-time hardness). To overcome this, the randomized community converts this combinatorial optimization to a continuous optimization by introducing random variables which denote rounding probabilities. Probabilistic Graphic Models Graph models represent problems as a factor graph where we have random variables and rules that are essentially the potential function. However, this problem is also NP-Hard. We use Variational Inference approximation technique to solve this. Here we introduce marginal distributions (μ) for the variables. We can then express a solution if we can find a set of globally consistent assignment for these marginal distributions. The problem here is, although we can express it as a linear program, there is an exponential number of constraints. We will use techniques from the graphical model's community, particularly Local Consistency Relaxation to convert this to a simpler problem. The simple idea is to relax search over consistent marginals to simpler set. We introduce local pseudo marginals over joint potential states. Using KKT conditions we can optimize out the θ to derive simplified projected LCR over μ. This approach shows 16% improvement over canonical dual decomposition (MPLP) Soft Logic In the Soft Logic technique for convex optimizations, we have random variables that denote a degree of truth or similarity. We are essentially trying to minimize the amount of dissatisfaction in the rules. Hence with three different interpretations i.e. Randomized Algorithms, Graphical Models, and Soft Logic, we get the same convex optimizations. A PSL essentially takes a PSL program, takes some input data and defines a convex optimization. PSL is open-source. The code, data, tutorials are available online at psl.linqs.org MAP inference in PSL translates into convex optimization problem Inference is further enhanced with state-of-the-art optimization and distributed graph processing paradigms Learning methods for rule weights and latent variables Using PSL gives fast as well as accurate results on comparison with other approaches. [/toggle] [dropcap]3[/dropcap] Templates Templates build on patterns to solve problems in bigger areas such as computational social sciences, knowledge discovery, and responsible data science and machine learning. [toggle title="To learn about some use cases of PSL and Templates for pattern recognition, open this section." state="close"] Computational Social Sciences For exploring this area we will apply a PSL model to Debate stance classification. Let us consider a scenario of an online debate. The topic of the debate is climate change. We can use information in the text to figure out if the people participating in the debate are pro or anti the topic. We can also use information about the dialogue in the discourse. And we can build this on a PSL model. This is based on the collective classification problem we saw earlier in the post. We get a significant rise in accuracy by using a PSL program. Here are the results Knowledge Discovery Using a structure and making use of patterns in Knowledge discovery really pays off. Although we have Information extractors which can extract information from the web and other sources such as facts about entities, relationships, they are usually noisy. So it gets difficult to reason about them collectively to figure out which facts we actually wanna add to our knowledge base. We can add structure to the knowledge graph construction by Performing collective classification, link prediction, and entity resolution Enforcing ontological constraints Integrate knowledge source confidences Using PSL to make it scalable Here’s the PSL program for knowledge graph identification. These were evaluated on three real-world knowledge graphs. NELL, MusicBrainz, and Freebase. As shown in the above image, both statistical features and semantic constraints help but combining them always wins. Responsible Machine Learning Understanding structure can be key to mitigating negative effects and lead to responsible Machine Learning. The perils of ignoring structure in the machine learning space include overlooking Privacy. For instance, many approaches consider only individual’s attribute data. Some don't take into account what can be inferred from relational context. The other area is around Fairness. The structure here is often outside the data. It can be in the organization or the socio-economic structure. To enable fairness we need to implement impartial decision making without bias and need to take into account structural patterns. Algorithmic Discrimination is another area which can make use of a structure. The fundamental structural pattern here is a feedback loop. Having a way of encoding this feedback loop is important to eliminate algorithmic discrimination. [/toggle] Conclusion In this article, we saw ways of exploiting structures that can be tractable. It provided some tools and templates for exploiting structure. The keynote also provided opportunities for Machine Learning methods that can mix: Structured and unstructured approaches Probabilistic and logical inference Data-driven and knowledge-driven modeling AI and Machine Learning developers need to build on the approaches as described above and discover, exploit, and find new structure and create compelling commercial, scientific, and societal applications.
Read more
  • 0
  • 0
  • 2168

article-image-nips-2017-learning-state-representations-yael-niv
Amarabha Banerjee
18 Dec 2017
6 min read
Save for later

NIPS 2017 Special: Decoding the Human Brain for Artificial Intelligence to make smarter decisions

Amarabha Banerjee
18 Dec 2017
6 min read
Yael Niv is an Associate Professor of Psychology at the Princeton Neuroscience Institute since 2007. Her preferred areas of research include human and animal reinforcement learning and decision making. At her Niv lab, she studies day-to-day processes that animals and humans use to learn by trial and error, without explicit instructions given. In order to predict future events and to act upon the current environment so as to maximize reward and minimize the damage. Our article aims to deliver key points from Yael Niv’s keynote presentation at NIPS 2017. She talks about the ability of Artificial Intelligence systems to perform simple human-like tasks effectively using State representations in the human brain. The talk also deconstructs the complex human decision-making process. Further, we explore how a human brain breaks down complex procedures into simple states and how these states determine our decision-making capabilities.This, in turn, gives valuable insights into the design and architecture of smart AI systems with decision-making capabilities. Staying Simple is Complex What do you think happens when a human being crosses a road, especially when it’s a busy street and you constantly need to keep an eye on multiple checkpoints in order to be safe and sound? The answer is quite ironical. The human brain breaks down the complex process into multiple simple blocks. The blocks can be termed as states - and these states then determine decisions such as when to cross the road or at what speed to cross the road. In other words, the states can be anything - from determining the incoming traffic density to maintaining the calculation of your walking speed. These states help the brain to ignore other spurious or latent tasks in order to complete the priority task at hand. Hence, the computational power of the brain is optimized. The human brain possesses the capability to focus on the most important task at hand and then breaks it down into multiple simple tasks. The process of making smarter AI systems with complex decision-making capabilities can take inspiration from this process. The Practical Human Experiment To observe how the human brain behaves when urged to draw complex decisions, a few experiments were performed. The primary objective of these experiments was to verify the hypothesis that the decision making information in the human brain is stored in a part of the frontal brain called as Orbitofrontal cortex. The two experiments performed are described in brief below: Experiment 1 The participants were given sets of circles at random and they were asked to guess the number of circles in the cluster within 2 minutes. After they guessed the first time, the experimenter disclosed the correct number of circles. Then the subjects were further given a cluster of circles in two different colors (red and yellow) to repeat the guessing activity for each cluster. However, the experimenter never disclosed the fact that they will be given different colored clusters next. Observation: The most important observation derived from the experiment was that after the subject knew the correct count, their guesses revolved around that number irrespective of whether that count mattered for the next set of circle clusters given. That is, the count had actually changed for the two color specimens given to them. The important factor here is that the participants were not told that color would be a parameter to determine the number of circles in each set and still it played a huge part in guessing the number of circles in each set. This way it acted as a latent factor, which was present in the subconscious of the participants and was not a direct parameter. And, this being a latent factor was not in the list of parameters which played an important in determining the number of circles. But still, it played an important part in changing the overall count which was significantly higher for the red color than for the yellow color cluster. Hence, the experiment proved the hypothesis that latent factors are an integral part of intelligent decision-making capabilities in human beings. Experiment 2 The second experiment was performed to ascertain the hypothesis that the Orbitofrontal cortex contains all the data to help the human brain make complex decisions. For this, human brains were monitored using MRI to track the brain activity during the decision making process. In this experiment, the subjects were given a straight line and a dot. They were then asked to predict the next line from the dot - both in terms of line direction and its length. After completing this process for a given number of times, the participants were asked to remember the length and direction of the first line. There was a minor change among the sets of lines and dots. One group had a gradual change in line length and direction and another group had a drastic change in the middle. Observation: The results showed that the group with a gradual change of line length and direction were more helpful in preserving the first data and the one with drastic change was less accurate. The MRI reports showed signs that the classification information was primarily stored in the Orbitofrontal cortex. Hence it is considered as one of the most important parts of the human decision-making process. Shallow Learning with Deep Representations The decision-making capabilities and the effect of latent factors involved in it form the basis of dormant memory in humans. An experiment on rats was performed to explain this phenomenon. In the experiment, 4 rats were given electric shock accompanied by a particular type of sound for a day or two. On the third day, they reacted to the sound even without being given electric shocks. Ivan Pavlov has coined this term as Classical Conditioning theory wherein a relatively permanent change in behavior can be seen as a result of experience or continuous practice. Such instances of conditioning can be deeply damaging, for example in case of PTSD (Post Traumatic Stress Disorder) patients and other trauma victims. In order to understand the process of State representations being stored in memory, the reversal mechanism, i.e how to reverse the process also needs to be understood. For that, three techniques were tested on these rats: The rats were not given any shock but were subjected to the sound The rats were given shocks accompanied by sound at regular intervals and sounds without shock The shocks were slowly reduced in numbers but the sound continued The best results in reversing the memory were observed in case of the third technique, which is known as gradual extinction. In this way, a simple reinforcement learning mechanism is shown to be very effective because it helps in creating simple states which are manageable efficiently and trainable easily. Along with this, if we could extract information from brain imaging data derived from the Orbitofrontal cortex, these simple representational states can shed a lot of light into making complex computational processes simpler and enable us to make smarter AI systems for a better future.
Read more
  • 0
  • 0
  • 2070
article-image-jim-balsillie-on-data-governance-challenges-and-6-recommendations-to-tackle-them
Savia Lobo
05 Jun 2019
5 min read
Save for later

Jim Balsillie on Data Governance Challenges and 6 Recommendations to tackle them

Savia Lobo
05 Jun 2019
5 min read
The Canadian Parliament's Standing Committee on Access to Information, Privacy and Ethics hosted the hearing of the International Grand Committee on Big Data, Privacy and Democracy from Monday, May 27 to Wednesday, May 29.  Witnesses from at least 11 countries appeared before representatives to testify on how governments can protect democracy and citizen rights in the age of big data. This section of the hearing, which took place on May 28, includes Jim Balsillie’s take on Data Governance. Jim Balsillie, Chair, Centre for International Governance Innovation; Retired Chairman and co-CEO of BlackBerry, starts off by talking about how Data governance is the most important public policy issue of our time. It is cross-cutting with economic, social and security dimensions. It requires both national policy frameworks and international coordination. He applauded the seriousness and integrity of Mr. Zimmer Angus and Erskine Smith who have spearheaded a Canadian bipartisan effort to deal with data governance over the past three years. “My perspective is that of a capitalist and global tech entrepreneur for 30 years and counting. I'm the retired Chairman and co-CEO of Research in Motion, a Canadian technology company [that] we scaled from an idea to 20 billion in sales. While most are familiar with the iconic BlackBerry smartphones, ours was actually a platform business that connected tens of millions of users to thousands of consumer and enterprise applications via some 600 cellular carriers in over 150 countries. We understood how to leverage Metcalfe's law of network effects to create a category-defining company, so I'm deeply familiar with multi-sided platform business model strategies as well as navigating the interface between business and public policy.”, he adds. He further talks about his different observations about the nature, scale, and breadth of some collective challenges for the committee’s consideration: Disinformation in fake news is just two of the negative outcomes of unregulated attention based business models. They cannot be addressed in isolation; they have to be tackled horizontally as part of an integrated whole. To agonize over social media’s role in the proliferation of online hate, conspiracy theories, politically motivated misinformation, and harassment, is to miss the root and scale of the problem. Social media’s toxicity is not a bug, it's a feature. Technology works exactly as designed. Technology products services and networks are not built in a vacuum. Usage patterns drive product development decisions. Behavioral scientists involved with today's platforms helped design user experiences that capitalize on negative reactions because they produce far more engagement than positive reactions. Among the many valuable insights provided by whistleblowers inside the tech industry is this quote, “the dynamics of the attention economy are structurally set up to undermine the human will.” Democracy and markets work when people can make choices align with their interests. The online advertisement driven business model subverts choice and represents a fundamental threat to markets election integrity and democracy itself. Technology gets its power through the control of data. Data at the micro-personal level gives technology unprecedented power to influence. “Data is not the new oil, it's the new plutonium amazingly powerful dangerous when it spreads difficult to clean up and with serious consequences when improperly used.” Data deployed through next-generation 5G networks are transforming passive in infrastructure into veritable digital nervous systems. Our current domestic and global institutions rules and regulatory frameworks are not designed to deal with any of these emerging challenges. Because cyberspace knows no natural borders, digital transformation effects cannot be hermetically sealed within national boundaries; international coordination is critical. With these observations, Balsillie has further provided six recommendations: Eliminate tax deductibility of specific categories of online ads. Ban personalized online advertising for elections. Implement strict data governance regulations for political parties. Provide effective whistleblower protections. Add explicit personal liability alongside corporate responsibility to effect the CEO and board of directors’ decision-making. Create a new institution for like-minded nations to address digital cooperation and stability. Technology is becoming the new 4th Estate Technology is disrupting governance and if left unchecked could render liberal democracy obsolete. By displacing the print and broadcast media and influencing public opinion, technology is becoming the new Fourth Estate. In our system of checks and balances, this makes technology co-equal with the executive that led the legislative and the judiciary. When this new Fourth Estate declines to appear before this committee, as Silicon Valley executives are currently doing, it is symbolically asserting this aspirational co-equal status. But is asserting the status and claiming its privileges without the traditions, disciplines, legitimacy, or transparency that checked the power of the traditional Fourth Estate. The work of this international grand committee is a vital first step towards reset redress of this untenable current situation. Referring to what Professor Zuboff said last night, we Canadians are currently in a historic battle for the future of our democracy with a charade called sidewalk Toronto. He concludes by saying, “I'm here to tell you that we will win that battle.” To know more you can listen to the full hearing video titled, “Meeting No. 152 ETHI - Standing Committee on Access to Information, Privacy, and Ethics” on ParlVU. Speech2Face: A neural network that “imagines” faces from hearing voices. Is it too soon to worry about ethnic profiling? UK lawmakers to social media: “You’re accessories to radicalization, accessories to crimes”, hearing on spread of extremist content Key Takeaways from Sundar Pichai’s Congress hearing over user data, political bias, and Project Dragonfly
Read more
  • 0
  • 0
  • 2054

article-image-session-4-fair-classification
Sugandha Lahoti
23 Feb 2018
7 min read
Save for later

FAT Conference 2018 Session 4: Fair Classification

Sugandha Lahoti
23 Feb 2018
7 min read
As algorithms are increasingly used to make decisions of social consequence, the social values encoded in these decision-making procedures are the subject of increasing study, with fairness being a chief concern. The Conference on Fairness, Accountability, and Transparency (FAT) scheduled on Feb 23 and 24 this year in New York is an annual conference dedicated to bringing theory and practice of fair and interpretable Machine Learning, Information Retrieval, NLP, Computer Vision, Recommender systems, and other technical disciplines. This year's program includes 17 peer-reviewed papers and 6 tutorials from leading experts in the field. The conference will have three sessions. Session 4 of the two-day conference on Saturday, February 24, is in the field of fair classification. In this article, we give our readers a peek into the four papers that have been selected for presentation in Session 4. You can also check out Session 1,  Session 2, and Session 3 summaries in case you’ve missed them. The cost of fairness in binary classification What is the paper about? This paper provides a simple approach to the Fairness-aware problem which involves suitably thresholding class-probability estimates. It has been awarded Best paper in Technical contribution category. The authors have studied the inherent tradeoffs in learning classifiers with a fairness constraint in the form of two questions: What is the best accuracy we can expect for a given level of fairness? What is the nature of these optimal fairness aware classifiers? The authors showed that for cost-sensitive approximate fairness measures, the optimal classifier is an instance-dependent thresholding of the class probability function. They have quantified the degradation in performance by a measure of alignment of the target and sensitive variable. This analysis is then used to derive a simple plugin approach for the fairness problem. Key takeaways For Fairness-aware learning, the authors have designed an algorithm targeting a particular measure of fairness. They have reduced two popular fairness measures (disparate impact and mean difference) to cost-sensitive risks. They show that for cost-sensitive fairness measures, the optimal Fairness-aware classifier is an instance-dependent thresholding of the class-probability function. They quantify the intrinsic, method independent impact of the fairness requirement on accuracy via a notion of alignment between the target and sensitive feature. The ability to theoretically compute the tradeoffs between fairness and utility is perhaps the most interesting aspect of their technical results. They have stressed that the tradeoff is intrinsic to the underlying data. That is, any fairness or unfairness, is a property of the data, not of any particular technique. They have theoretically computed what price one has to pay (in utility) in order to achieve a desired degree of fairness: in other words, they have computed the cost of fairness. Decoupled Classifiers for Group-Fair and Efficient Machine Learning What is the paper about? This paper considers how to use a sensitive attribute such as gender or race to maximize fairness and accuracy, assuming that it is legal and ethical. Simple linear classifiers may use the raw data, upweight/oversample data from minority groups, or employ advanced approaches to fitting linear classifiers that aim to be accurate and fair. However, an inherent tradeoff between accuracy on one group and accuracy on another still prevails. This paper defines and explores decoupled classification systems, in which a separate classifier is trained on each group. The authors present experiments on 47 datasets. The experiments are “semi-synthetic” in the sense that the first binary feature was used as a substitute sensitive feature. The authors found that on many data sets the decoupling algorithm improves performance while less often decreasing performance. Key takeaways The paper describes a simple technical approach for a practitioner using ML to incorporate sensitive attributes. This approach avoids unnecessary accuracy tradeoffs between groups and can accommodate an application-specific objective, generalizing the standard ML notion of loss. For a certain family of “weakly monotonic” fairness objectives, the authors provide a black-box reduction that can use any off-the-shelf classifier to efficiently optimize the objective. This work requires the application designer to pin down a specific loss function that trades off accuracy for fairness. Experiments demonstrate that decoupling can reduce the loss on some datasets for some potentially sensitive features A case study of algorithm-assisted decision making in child maltreatment hotline screening decisions What is the paper about? The work is based on the use of predictive analytics in the area of child welfare. It won the best paper award in the Technical and Interdisciplinary Contribution. The authors have worked on developing, validating, fairness auditing, and deploying a risk prediction model in Allegheny County, PA, USA. The authors have described competing models that are being developed in the Allegheny County as part of an ongoing redesign process in comparison to the previous models. Next, they investigate the predictive bias properties of the current tool and a Random forest model that has emerged as one of the best performing competing models. Their predictive bias assessment is motivated both by considerations of human bias and recent work on fairness criteria. They then discuss some of the challenges in incorporating algorithms into human decision-making processes and reflect on the predictive bias analysis in the context of how the model is actually being used. They also propose an “oracle test” as a tool for clarifying whether particular concerns pertain to the statistical properties of a model or if these concerns are targeted at other potential deficiencies. Key takeaways The goal in Allegheny County is to improve both the accuracy and equity of screening decisions by taking a Fairness-aware approach to incorporating prediction models into the decision-making pipeline. The paper reports on the lessons learned so far by the authors, their approaches to predictive bias assessment, and several outstanding challenges in the child maltreatment hotline context. This report contributes to the ongoing conversation concerning the use of algorithms in supporting critical decisions in government—and the importance of considering fairness and discrimination in data-driven decision making. The paper discussion and general analytic approach are also broadly applicable to other domains where predictive risk modeling may be used. Fairness in Machine Learning: Lessons from Political Philosophy What is the paper about? Plenty of moral and political philosophers have expended significant efforts in formalizing and defending the central concepts of discrimination, egalitarianism, and justice. Thus it is unsurprising to know that the attempts to formalize ‘fairness’ in machine learning contain echoes of these old philosophical debates. This paper draws on existing work in moral and political philosophy in order to elucidate emerging debates about fair machine learning. It answers the following questions: What does it mean for a machine learning model to be ‘fair’, in terms which can be operationalized? Should fairness consist of ensuring everyone has an equal probability of obtaining some benefit, or should we aim instead to minimize the harms to the least advantaged? Can the relevant ideal be determined by reference to some alternative state of affairs in which a particular social pattern of discrimination does not exist? Key takeaways This paper aims to provide an overview of some of the relevant philosophical literature on discrimination, fairness, and egalitarianism in order to clarify and situate the emerging debate within fair machine learning literature. The author addresses the conceptual distinctions drawn between terms frequently used in the fair ML literature–including ‘discrimination’ and ‘fairness’–and the use of related terms in the philosophical literature. He suggests that ‘fairness’ as used in the fair machine learning community is best understood as a placeholder term for a variety of normative egalitarian considerations. He also provides an overview of implications for the incorporation of ‘fairness’ into algorithmic decision-making systems. We hope you like the coverage of Session 4. Don’t miss our coverage on Session 5 on Fat recommenders and more.
Read more
  • 0
  • 0
  • 2047