Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
TensorFlow Machine Learning Cookbook

You're reading from   TensorFlow Machine Learning Cookbook Over 60 practical recipes to help you master Google's TensorFlow machine learning library

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher Packt
ISBN-13 9781786462169
Length 370 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nick McClure Nick McClure
Author Profile Icon Nick McClure
Nick McClure
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

TensorFlow Machine Learning Cookbook
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
1. Getting Started with TensorFlow FREE CHAPTER 2. The TensorFlow Way 3. Linear Regression 4. Support Vector Machines 5. Nearest Neighbor Methods 6. Neural Networks 7. Natural Language Processing 8. Convolutional Neural Networks 9. Recurrent Neural Networks 10. Taking TensorFlow to Production 11. More with TensorFlow Index

Using Nearest Neighbors for Image Recognition


Getting ready

Nearest neighbors can also be used for image recognition. The Hello World of image recognition datasets is the MNIST handwritten digit dataset. Since we will be using this dataset for various neural network image recognition algorithms in later chapters, it will be great to compare the results to a non-neural network algorithm.

The MNIST digit dataset is composed of thousands of labeled images that are 28x28 pixels in size. Although this is considered to be a small image, it has a total of 784 pixels (or features) for the nearest neighbor algorithm. We will compute the nearest neighbor prediction for this categorical problem by considering the mode prediction of the nearest k neighbors (k=4 in this example).

How to do it…

  1. We start by loading the necessary libraries. Note that we will also import the Python Image Library (PIL) to be able to plot a sample of the predicted outputs. And TensorFlow has a built-in method to load the MNIST...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime
Visually different images