Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning Algorithms

You're reading from   Machine Learning Algorithms A reference guide to popular algorithms for data science and machine learning

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781785889622
Length 360 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Arrow right icon
View More author details
Toc

Table of Contents (22) Chapters Close

Title Page
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
1. A Gentle Introduction to Machine Learning 2. Important Elements in Machine Learning FREE CHAPTER 3. Feature Selection and Feature Engineering 4. Linear Regression 5. Logistic Regression 6. Naive Bayes 7. Support Vector Machines 8. Decision Trees and Ensemble Learning 9. Clustering Fundamentals 10. Hierarchical Clustering 11. Introduction to Recommendation Systems 12. Introduction to Natural Language Processing 13. Topic Modeling and Sentiment Analysis in NLP 14. A Brief Introduction to Deep Learning and TensorFlow 15. Creating a Machine Learning Architecture

Summary


A linear model classifies samples using separating hyperplanes; hence, a problem is linearly separable if it's possible to find a linear model whose accuracy overcomes a predetermined threshold. Logistic regression is one of most famous linear classifiers, based on the principle of maximizing the probability of a sample belonging to the right class. Stochastic gradient descent classifiers are a more generic family of algorithms, determined by the different loss function that is adopted. SGD allows partial fitting, particularly when the amount of data is too huge to be loaded in memory. A perceptron is a particular instance of SGD, representing a linear neural network that cannot solve the XOR problem (for this reason, multi-layer perceptrons became the first choice for non-linear classification). However, in general, its performance is comparable to a logistic regression model.

All classifier performances must be measured using different approaches, in order to be able to optimize...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime
Visually different images