Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
The Deep Learning Architect's Handbook
The Deep Learning Architect's Handbook

The Deep Learning Architect's Handbook: Build and deploy production-ready DL solutions leveraging the latest Python techniques

Arrow left icon
Profile Icon Ee Kin Chin
Arrow right icon
$12.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.8 (10 Ratings)
Paperback Dec 2023 516 pages 1st Edition
eBook
$42.99
Paperback
$52.99
Subscription
Free Trial
Renews at $12.99p/m
Arrow left icon
Profile Icon Ee Kin Chin
Arrow right icon
$12.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.8 (10 Ratings)
Paperback Dec 2023 516 pages 1st Edition
eBook
$42.99
Paperback
$52.99
Subscription
Free Trial
Renews at $12.99p/m
eBook
$42.99
Paperback
$52.99
Subscription
Free Trial
Renews at $12.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $15.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Key benefits

  • Interpret your models’ decision-making process, ensuring transparency and trust in your AI-powered solutions
  • Gain hands-on experience in every step of the deep learning life cycle
  • Explore case studies and solutions for deploying DL models while addressing scalability, data drift, and ethical considerations
  • Purchase of the print or Kindle book includes a free PDF eBook

Description

Deep learning enables previously unattainable feats in automation, but extracting real-world business value from it is a daunting task. This book will teach you how to build complex deep learning models and gain intuition for structuring your data to accomplish your deep learning objectives. This deep learning book explores every aspect of the deep learning life cycle, from planning and data preparation to model deployment and governance, using real-world scenarios that will take you through creating, deploying, and managing advanced solutions. You’ll also learn how to work with image, audio, text, and video data using deep learning architectures, as well as optimize and evaluate your deep learning models objectively to address issues such as bias, fairness, adversarial attacks, and model transparency. As you progress, you’ll harness the power of AI platforms to streamline the deep learning life cycle and leverage Python libraries and frameworks such as PyTorch, ONNX, Catalyst, MLFlow, Captum, Nvidia Triton, Prometheus, and Grafana to execute efficient deep learning architectures, optimize model performance, and streamline the deployment processes. You’ll also discover the transformative potential of large language models (LLMs) for a wide array of applications. By the end of this book, you'll have mastered deep learning techniques to unlock its full potential for your endeavors.

Who is this book for?

This book is for deep learning practitioners, data scientists, and machine learning developers who want to explore deep learning architectures to solve complex business problems. Professionals in the broader deep learning and AI space will also benefit from the insights provided, applicable across a variety of business use cases. Working knowledge of Python programming and a basic understanding of deep learning techniques is needed to get started with this book.

What you will learn

  • Use neural architecture search (NAS) to automate the design of artificial neural networks (ANNs)
  • Implement recurrent neural networks (RNNs), convolutional neural networks (CNNs), BERT, transformers, and more to build your model
  • Deal with multi-modal data drift in a production environment
  • Evaluate the quality and bias of your models
  • Explore techniques to protect your model from adversarial attacks
  • Get to grips with deploying a model with DataRobot AutoML

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 29, 2023
Length: 516 pages
Edition : 1st
Language : English
ISBN-13 : 9781803243795
Category :
Languages :
Concepts :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $15.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Dec 29, 2023
Length: 516 pages
Edition : 1st
Language : English
ISBN-13 : 9781803243795
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$12.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$129.99 billed annually
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$179.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 156.97
Causal Inference and Discovery in Python
$53.99
Python Deep Learning
$49.99
The Deep Learning Architect's Handbook
$52.99
Total $ 156.97 Stars icon
Visually different images

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.8
(10 Ratings)
5 star 80%
4 star 20%
3 star 0%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Pat Mthisi Feb 15, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The books are of top quality and easy to use. They contain practical examples, and I would recommend them to anyone wanting to dive into AI.
Feefo Verified review Feefo
H2N Feb 13, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This is a great deep learning book for data scientists and machine learning engineers. The book introduces how to solve complex business issues with deep learning techniques. The author discusses the fundamentals of the deep learning to advanced topics like CNNs, RNNs, Autoencoders, and Transformers using Python with neural architecture design, evaluation, bias and fairness, and deploying models, offering practical insights for leveraging AI platforms like DataRobot.
Amazon Verified review Amazon
tt0507 Feb 21, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The book explores the intricacies of neural networks and machine learning, covering foundational concepts, advanced techniques, and practical applications. It provides a modern guide to model building and deployment, emphasizing key architectures such as convolutional neural networks, recurrent neural networks, autoencoders, and Transformer architecture.The book also addresses model interpretation, evaluation, bias, fairness, and adversarial performance. With practical insights into deployment (production environments, governance, drift management, and large language models), this guide is also helpful for deep learning practitioners, data scientists, and machine learning engineers whose roles include DLOps (MLOps for deep learning) tasks.Overall, the book offers a holistic view of theoretical concepts, methodologies, and emerging trends, making it a valuable resource for both novice learners and experienced practitioners if deep learning. Python libraries like PyTorch are highlighted for streamlining the deep learning process and optimizing model performance. The accompanying GitHub repository provides helpful code examples, reinforcing the practical application of concepts throughout the book. I highly recommend the book to anyone looking to deepen their understanding of neural networks and gain insight into deploying deep learning models.
Amazon Verified review Amazon
Didi Feb 19, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Deep learning (DL)—a subset of machine learning that utilizes deep neural networks—has taken the world by storm and made numerous significant breakthroughs throughout the last decade. These breakthroughs have revolutionized entire fields such as computer vision and natural language processing. This comprehensive book is a modern guide to DL model building and deployment, and serves as a unique and practical resource for understanding modern DL architectures, model training, and real-world deployment from the ground up.The book begins with a clear and detailed overview of foundational DL architectures, such as convolutional neural networks (NNs), recurrent NNs, autoencoders, and the Transformer architecture. The second part of the book focuses on interpreting and extracting insights from DL models, and covers model evaluation techniques, interpreting model predictions, exploring bias and fairness, and analyzing adversarial performance. The last part of the book is focused on various practical aspects of real-world model deployment (aka DLOps), including deployment in production environments, governance, drift management, and even the architecture of LLMs (large language models). The helpful code examples and diagrams that accompany the textual descriptions greatly assist in reinforcing the materials and concepts presented in the book. The accompanying GitHub repository includes all code examples, and is very useful as well.This practical guide will benefit any DL practitioner, researcher, data scientist or machine learning practitioner who wants to better understand how to build and deploy real-world DL models. Prior familiarity with DL and Python will be very helpful to fully benefit from this book.Highly recommended!
Amazon Verified review Amazon
Vikram Chaudhary Feb 29, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
My background is an executive-level product leader at Meta's AI Infrastructure organization, and I was impressed and grateful to read this book. It is an amazing resource for learning all the different aspects of AI, especially Deep Learning techniques like Supervised Learning, Neural Networks, and all the flavors of these and other areas of AI. The book is simultaneously at an introductory level if you are technically aware, then business-relevant because it talks about the different use cases. It is also deep enough for architects looking to understand how the technology works, and finally, you have Python examples and sample code to accelerate your engineering learning. This should be your Deep Learning bible!
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.