Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Statistics for Machine Learning

You're reading from   Statistics for Machine Learning Techniques for exploring supervised, unsupervised, and reinforcement learning models with Python and R

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781788295758
Length 442 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Pratap Dangeti Pratap Dangeti
Author Profile Icon Pratap Dangeti
Pratap Dangeti
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
1. Journey from Statistics to Machine Learning FREE CHAPTER 2. Parallelism of Statistics and Machine Learning 3. Logistic Regression Versus Random Forest 4. Tree-Based Machine Learning Models 5. K-Nearest Neighbors and Naive Bayes 6. Support Vector Machines and Neural Networks 7. Recommendation Engines 8. Unsupervised Learning 9. Reinforcement Learning

Chapter 9. Reinforcement Learning

Reinforcement learning (RL) is the third major section of machine learning after supervised and unsupervised learning. These techniques have gained a lot of traction in recent years in the application of artificial intelligence. In reinforcement learning, sequential decisions are to be made rather than one shot decision making, which makes it difficult to train the models in few cases. In this chapter, we would be covering various techniques used in reinforcement learning with practical examples to support with. Though covering all topics are beyond the scope of this book, but we did cover most important fundamentals here for a reader to create enough enthusiasm on this subject. Topics discussed in this chapter are:

  • Markov decision process
  • Bellman equations
  • Dynamic programming
  • Monte Carlo methods
  • Temporal difference learning
  • Recent trends in artificial intelligence with the integrated application of reinforcement learning and machine learning
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images