Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Machine Learning with R, Second Edition

You're reading from   Mastering Machine Learning with R, Second Edition Advanced prediction, algorithms, and learning methods with R 3.x

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781787287471
Length 420 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
 Lesmeister Lesmeister
Author Profile Icon Lesmeister
Lesmeister
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Title Page
Credits
About the Author
About the Reviewers
Packt Upsell
Customer Feedback
Preface
1. A Process for Success FREE CHAPTER 2. Linear Regression - The Blocking and Tackling of Machine Learning 3. Logistic Regression and Discriminant Analysis 4. Advanced Feature Selection in Linear Models 5. More Classification Techniques - K-Nearest Neighbors and Support Vector Machines 6. Classification and Regression Trees 7. Neural Networks and Deep Learning 8. Cluster Analysis 9. Principal Components Analysis 10. Market Basket Analysis, Recommendation Engines, and Sequential Analysis 11. Creating Ensembles and Multiclass Classification 12. Time Series and Causality 13. Text Mining 14. R on the Cloud 15. R Fundamentals 16. Sources

Summary


In this chapter, we reviewed two new classification techniques: KNN and SVM. The goal was to discover how these techniques work, and the differences between them, by building and comparing models on a common dataset in order to predict if an individual had diabetes. KNN involved both the unweighted and weighted nearest neighbor algorithms. These did not perform as well as the SVMs in predicting whether an individual had diabetes or not.

We examined how to build and tune both the linear and nonlinear support vector machines using the e1071 package. We used the extremely versatile caret package to compare the predictive ability of a linear and nonlinear support vector machine and saw that the nonlinear support vector machine with a sigmoid kernel performed the best.

Finally, we touched on how you can use the caret package to perform a crude feature selection, as this is a difficult challenge with a blackbox technique such as SVM. This can be a major challenge when using these techniques...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images