Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Hadoop 2

You're reading from   Learning Hadoop 2 Design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2

Arrow left icon
Product type Paperback
Published in Feb 2015
Publisher Packt
ISBN-13 9781783285518
Length 382 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
GABRIELE MODENA GABRIELE MODENA
Author Profile Icon GABRIELE MODENA
GABRIELE MODENA
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Learning Hadoop 2
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
1. Introduction FREE CHAPTER 2. Storage 3. Processing – MapReduce and Beyond 4. Real-time Computation with Samza 5. Iterative Computation with Spark 6. Data Analysis with Apache Pig 7. Hadoop and SQL 8. Data Lifecycle Management 9. Making Development Easier 10. Running a Hadoop Cluster 11. Where to Go Next Index

YARN


YARN started out as part of the MapReduce v2 (MRv2) initiative but is now an independent sub-project within Hadoop (that is, it's at the same level as MapReduce). It grew out of a realization that MapReduce in Hadoop 1 conflated two related but distinct responsibilities: resource management and application execution.

Although it has enabled previously unimagined processing on enormous datasets, the MapReduce model at a conceptual level has an impact on performance and scalability. Implicit in the MapReduce model is that any application can only be composed of a series of largely linear MapReduce jobs, each of which follows a model of one or more maps followed by one or more reduces. This model is a great fit for some applications, but not all. In particular, it's a poor fit for workloads requiring very low-latency response times; the MapReduce startup times and sometimes lengthy job chains often greatly exceed the tolerance for a user-facing process. The model has also been found to...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images