Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Game Physics Cookbook

You're reading from   Game Physics Cookbook Discover over 100 easy-to-follow recipes to help you implement efficient game physics and collision detection in your games

Arrow left icon
Product type Paperback
Published in Mar 2017
Publisher Packt
ISBN-13 9781787123663
Length 480 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Gabor Szauer Gabor Szauer
Author Profile Icon Gabor Szauer
Gabor Szauer
Arrow right icon
View More author details
Toc

Table of Contents (27) Chapters Close

Game Physics Cookbook
Credits
About the Author
Acknowledgements
About the Reviewer
Acknowledgements
www.PacktPub.com
Customer Feedback
Preface
1. Vectors FREE CHAPTER 2. Matrices 3. Matrix Transformations 4. 2D Primitive Shapes 5. 2D Collisions 6. 2D Optimizations 7. 3D Primitive Shapes 8. 3D Point Tests 9. 3D Shape Intersections 10. 3D Line Intersections 11. Triangles and Meshes 12. Models and Scenes 13. Camera and Frustum 14. Constraint Solving 15. Manifolds and Impulses 16. Springs and Joints Advanced Topics Index

Determinant of a 3x3 matrix


We can find the determinant of any matrix through Laplace Expansion. We will be using this method to find the determinant of 3 X 3 and higher order matrices. We also used this method to find the determinant of 2 X 2 matrices; we just expanded the method by hand for that function to avoid looping:

To follow the formula, we loop through the first row of the matrix and multiply each element with the respective element of the cofactor matrix. Then, we sum up the result of each multiplication. The resulting sum is the determinant of the matrix.

Using the first row is an arbitrary choice. You can do this equation on any row of the matrix and get the same result.

Getting ready

In order to implement this in code, first find the cofactor of the input matrix. Once we have a cofactor matrix, sum the result of looping through the first row and multiply each element by the same element in the cofactor matrix.

How to do it…

Follow these steps to implement a function which returns...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images