Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Elasticsearch Essentials

You're reading from   Elasticsearch Essentials Harness the power of ElasticSearch to build and manage scalable search and analytics solutions with this fast-paced guide

Arrow left icon
Product type Paperback
Published in Jan 2016
Publisher
ISBN-13 9781784391010
Length 240 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Bharvi Dixit Bharvi Dixit
Author Profile Icon Bharvi Dixit
Bharvi Dixit
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Elasticsearch Essentials
Credits
About the Author
Acknowledgments
About the Reviewer
www.PacktPub.com
Preface
1. Getting Started with Elasticsearch FREE CHAPTER 2. Understanding Document Analysis and Creating Mappings 3. Putting Elasticsearch into Action 4. Aggregations for Analytics 5. Data Looks Better on Maps: Master Geo-Spatiality 6. Document Relationships in NoSQL World 7. Different Methods of Search and Bulk Operations 8. Controlling Relevancy 9. Cluster Scaling in Production Deployments 10. Backups and Security Index

Memory pressure and implications


Aggregations are awesome! However, they bring a lot of memory pressure on Elasticsearch. They work on an in-memory data structure called fielddata, which is the biggest consumer of HEAP memory in a Elasticsearch cluster. Fielddata is not only used for aggregations, but also used for sorting and scripts. The in-memory fielddata is slow to load, as it has to read the whole inverted index and un-invert it. If the fielddata cache fills up, old data is evicted causing heap churn and bad performance (as fielddata is reloaded and evicted again.)

The more unique terms exist in the index, the more terms will be loaded into memory and the more pressure it will have. If you are using an Elasticsearch version below 2.0.0 and above 1.0.0, then you can use the doc_vlaues parameter inside the mapping while creating the index to avoid the use of fielddata using the following syntax:

PUT /index_name/_mapping/index_type
{
  "properties": {
    "field_name": {
      "type": ...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images