Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Deep Reinforcement Learning Hands-On
Deep Reinforcement Learning Hands-On

Deep Reinforcement Learning Hands-On: Apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more , Second Edition

Arrow left icon
Profile Icon Maxim Lapan
Arrow right icon
$12.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3 (38 Ratings)
Paperback Jan 2020 826 pages 2nd Edition
eBook
$63.99
Paperback
$79.99
Subscription
Free Trial
Renews at $12.99p/m
Arrow left icon
Profile Icon Maxim Lapan
Arrow right icon
$12.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3 (38 Ratings)
Paperback Jan 2020 826 pages 2nd Edition
eBook
$63.99
Paperback
$79.99
Subscription
Free Trial
Renews at $12.99p/m
eBook
$63.99
Paperback
$79.99
Subscription
Free Trial
Renews at $12.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $15.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Deep Reinforcement Learning Hands-On

OpenAI Gym

After talking so much about the theoretical concepts of reinforcement learning (RL) in Chapter 1, What Is Reinforcement Learning?, let's start doing something practical! In this chapter, you will learn the basics of OpenAI Gym, a library used to provide a uniform API for an RL agent and lots of RL environments. This removes the need to write boilerplate code.

You will also write your first randomly behaving agent and become more familiar with the basic concepts of RL that we have covered so far. By the end of the chapter, you will have an understanding of:

  • The high-level requirements that need to be implemented to plug the agent into the RL framework
  • A basic, pure-Python implementation of the random RL agent
  • OpenAI Gym

The anatomy of the agent

As you learned in the previous chapter, there are several entities in RL's view of the world:

  • The agent: A thing, or person, that takes an active role. In practice, the agent is some piece of code that implements some policy. Basically, this policy decides what action is needed at every time step, given our observations.
  • The environment: Some model of the world that is external to the agent and has the responsibility of providing observations and giving rewards. The environment changes its state based on the agent's actions.

Let's explore how both can be implemented in Python for a simple situation. We will define an environment that will give the agent random rewards for a limited number of steps, regardless of the agent's actions. This scenario is not very useful, but it will allow us to focus on specific methods in both the environment and agent classes. Let's start with the environment:

class Environment:
...

Hardware and software requirements

The examples in this book were implemented and tested using Python version 3.7. I assume that you're already familiar with the language and common concepts such as virtual environments, so I won't cover in detail how to install the package and how to do this in an isolated way. The examples will use the previously mentioned Python type annotations, which will allow us to provide type signatures for functions and class methods.

The external libraries that we will use in this book are open source software, and they include the following:

  • NumPy: This is a library for scientific computing, and implementing matrix operations and common functions.
  • OpenCV Python bindings: This is a computer vision library and provides many functions for image processing.
  • Gym: This is an RL framework that has various environments that can be communicated with in a unified way.
  • PyTorch: This is a flexible and expressive deep learning (DL) library...

The OpenAI Gym API

The Python library called Gym was developed and has been maintained by OpenAI (www.openai.com). The main goal of Gym is to provide a rich collection of environments for RL experiments using a unified interface. So, it is not surprising that the central class in the library is an environment, which is called Env. Instances of this class expose several methods and fields that provide the required information about its capabilities. At a high level, every environment provides these pieces of information and functionality:

  • A set of actions that is allowed to be executed in the environment. Gym supports both discrete and continuous actions, as well as their combination
  • The shape and boundaries of the observations that the environment provides the agent with
  • A method called step to execute an action, which returns the current observation, the reward, and the indication that the episode is over
  • A method called reset, which returns the environment to...

The random CartPole agent

Although the environment is much more complex than our first example in The anatomy of the agent section, the code of the agent is much shorter. This is the power of reusability, abstractions, and third-party libraries!

So, here is the code (you can find it in Chapter02/02_cartpole_random.py).

import gym
if __name__ == "__main__":
    env = gym.make("CartPole-v0")
    total_reward = 0.0
    total_steps = 0
    obs = env.reset()

Here, we created the environment and initialized the counter of steps and the reward accumulator. On the last line, we reset the environment to obtain the first observation (which we will not use, as our agent is stochastic).

    while True:
        action = env.action_space.sample()
        obs, reward, done, _ = env.step(action)
        total_reward += reward
        total_steps += 1
        if done:
            break
    print("Episode done in %d steps, total reward %.2f&quot...

Extra Gym functionality – wrappers and monitors

What we have discussed so far covers two-thirds of the Gym core API and the essential functions required to start writing agents. The rest of the API you can live without, but it will make your life easier and your code cleaner. So, let's briefly cover the rest of the API.

Wrappers

Very frequently, you will want to extend the environment's functionality in some generic way. For example, imagine an environment gives you some observations, but you want to accumulate them in some buffer and provide to the agent the N last observations. This is a common scenario for dynamic computer games, when one single frame is just not enough to get the full information about the game state. Another example is when you want to be able to crop or preprocess an image's pixels to make it more convenient for the agent to digest, or if you want to normalize reward scores somehow. There are many such situations that have the same...

Summary

You have started to learn about the practical side of RL! In this chapter, we installed OpenAI Gym, with its tons of environments to play with. We studied its basic API and created a randomly behaving agent.

You also learned how to extend the functionality of existing environments in a modular way and became familiar with a way to record our agent's activity using the Monitor class. This will be heavily used in the upcoming chapters.

In the next chapter, we will do a quick DL recap using PyTorch, which is a favorite library among DL researchers. Stay tuned.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Second edition of the bestselling introduction to deep reinforcement learning, expanded with six new chapters
  • Learn advanced exploration techniques including noisy networks, pseudo-count, and network distillation methods
  • Apply RL methods to cheap hardware robotics platforms

Description

Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. With six new chapters devoted to a variety of up-to-the-minute developments in RL, including discrete optimization (solving the Rubik's Cube), multi-agent methods, Microsoft's TextWorld environment, advanced exploration techniques, and more, you will come away from this book with a deep understanding of the latest innovations in this emerging field. In addition, you will gain actionable insights into such topic areas as deep Q-networks, policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. You will also discover how to build a real hardware robot trained with RL for less than $100 and solve the Pong environment in just 30 minutes of training using step-by-step code optimization. In short, Deep Reinforcement Learning Hands-On, Second Edition, is your companion to navigating the exciting complexities of RL as it helps you attain experience and knowledge through real-world examples.

Who is this book for?

Some fluency in Python is assumed. Sound understanding of the fundamentals of deep learning will be helpful. This book is an introduction to deep RL and requires no background in RL

What you will learn

  • Understand the deep learning context of RL and implement complex deep learning models
  • Evaluate RL methods including cross-entropy, DQN, actor-critic, TRPO, PPO, DDPG, D4PG, and others
  • Build a practical hardware robot trained with RL methods for less than $100
  • Discover Microsoft s TextWorld environment, which is an interactive fiction games platform
  • Use discrete optimization in RL to solve a Rubik s Cube
  • Teach your agent to play Connect 4 using AlphaGo Zero
  • Explore the very latest deep RL research on topics including AI chatbots
  • Discover advanced exploration techniques, including noisy networks and network distillation techniques

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jan 31, 2020
Length: 826 pages
Edition : 2nd
Language : English
ISBN-13 : 9781838826994
Category :
Languages :
Concepts :

What do you get with a Packt Subscription?

Free for first 7 days. $15.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Jan 31, 2020
Length: 826 pages
Edition : 2nd
Language : English
ISBN-13 : 9781838826994
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$12.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$129.99 billed annually
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$179.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 183.97
Deep Reinforcement Learning with Python
$48.99
Python Machine Learning
$54.99
Deep Reinforcement Learning Hands-On
$79.99
Total $ 183.97 Stars icon
Visually different images

Table of Contents

27 Chapters
What Is Reinforcement Learning? Chevron down icon Chevron up icon
OpenAI Gym Chevron down icon Chevron up icon
Deep Learning with PyTorch Chevron down icon Chevron up icon
The Cross-Entropy Method Chevron down icon Chevron up icon
Tabular Learning and the Bellman Equation Chevron down icon Chevron up icon
Deep Q-Networks Chevron down icon Chevron up icon
Higher-Level RL Libraries Chevron down icon Chevron up icon
DQN Extensions Chevron down icon Chevron up icon
Ways to Speed up RL Chevron down icon Chevron up icon
Stocks Trading Using RL Chevron down icon Chevron up icon
Policy Gradients – an Alternative Chevron down icon Chevron up icon
The Actor-Critic Method Chevron down icon Chevron up icon
Asynchronous Advantage Actor-Critic Chevron down icon Chevron up icon
Training Chatbots with RL Chevron down icon Chevron up icon
The TextWorld Environment Chevron down icon Chevron up icon
Web Navigation Chevron down icon Chevron up icon
Continuous Action Space Chevron down icon Chevron up icon
RL in Robotics Chevron down icon Chevron up icon
Trust Regions – PPO, TRPO, ACKTR, and SAC Chevron down icon Chevron up icon
Black-Box Optimization in RL Chevron down icon Chevron up icon
Advanced Exploration Chevron down icon Chevron up icon
Beyond Model-Free – Imagination Chevron down icon Chevron up icon
AlphaGo Zero Chevron down icon Chevron up icon
RL in Discrete Optimization Chevron down icon Chevron up icon
Multi-agent RL Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.3
(38 Ratings)
5 star 71.1%
4 star 10.5%
3 star 7.9%
2 star 0%
1 star 10.5%
Filter icon Filter
Top Reviews

Filter reviews by




Machiel Kruger Feb 22, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Feefo Verified review Feefo
Oren Zeev-Ben-Mordehai Feb 24, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I enjoy the reading and I'm learning exactly what I was looking for and much more relevant material.
Feefo Verified review Feefo
Keadtipoom Aug 25, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Good book, read and run too easy.
Amazon Verified review Amazon
Antonis Polykratis Apr 01, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The product arrived in good condition.
Amazon Verified review Amazon
Ilya May 04, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I drew a lot of inspiration from this book for my courseworks and dissertation. The diagrams are black and white but it didn't really matter. Content quality seemed to worsen somewhat by the end though
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.