Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Reinforcement Learning Hands-On

You're reading from   Deep Reinforcement Learning Hands-On Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781788834247
Length 546 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Maxim Lapan Maxim Lapan
Author Profile Icon Maxim Lapan
Maxim Lapan
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Deep Reinforcement Learning Hands-On
Contributors
Preface
Other Books You May Enjoy
1. What is Reinforcement Learning? FREE CHAPTER 2. OpenAI Gym 3. Deep Learning with PyTorch 4. The Cross-Entropy Method 5. Tabular Learning and the Bellman Equation 6. Deep Q-Networks 7. DQN Extensions 8. Stocks Trading Using RL 9. Policy Gradients – An Alternative 10. The Actor-Critic Method 11. Asynchronous Advantage Actor-Critic 12. Chatbots Training with RL 13. Web Navigation 14. Continuous Action Space 15. Trust Regions – TRPO, PPO, and ACKTR 16. Black-Box Optimization in RL 17. Beyond Model-Free – Imagination 18. AlphaGo Zero Index

Q-learning for FrozenLake


The whole example is in the Chapter05/02_frozenlake_q_learning.py file, and the difference is really minor. The most obvious change is to our value table. In the previous example, we kept the value of the state, so the key in the dictionary was just a state. Now we need to store values of the Q-function, which has two parameters: state and action, so the key in the value table is now a composite.

The second difference is in our calc_action_value function. We just don't need it anymore, as our action values are stored in the value table. Finally, the most important change in the code is in the agent's value_iteration method. Before, it was just a wrapper around the calc_action_value call, which did the job of Bellman approximation. Now, as this function has gone and was replaced by a value table, we need to do this approximation in the value_iteration method.

Let's look at the code. As it's almost the same, I'll jump directly to the most interesting value_iteration...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images