Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Cleaning Data for Effective Data Science
Cleaning Data for Effective Data Science

Cleaning Data for Effective Data Science: Doing the other 80% of the work with Python, R, and command-line tools

Arrow left icon
Profile Icon David Mertz
Arrow right icon
$12.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.9 (17 Ratings)
Paperback Mar 2021 498 pages 1st Edition
eBook
$29.99
Paperback
$43.99
Subscription
Free Trial
Renews at $12.99p/m
Arrow left icon
Profile Icon David Mertz
Arrow right icon
$12.99 per month
Full star icon Full star icon Full star icon Full star icon Half star icon 4.9 (17 Ratings)
Paperback Mar 2021 498 pages 1st Edition
eBook
$29.99
Paperback
$43.99
Subscription
Free Trial
Renews at $12.99p/m
eBook
$29.99
Paperback
$43.99
Subscription
Free Trial
Renews at $12.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $15.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Key benefits

  • Master data cleaning techniques necessary to perform real-world data science and machine learning tasks
  • Spot common problems with dirty data and develop flexible solutions from first principles
  • Test and refine your newly acquired skills through detailed exercises at the end of each chapter

Description

Data cleaning is the all-important first step to successful data science, data analysis, and machine learning. If you work with any kind of data, this book is your go-to resource, arming you with the insights and heuristics experienced data scientists had to learn the hard way. In a light-hearted and engaging exploration of different tools, techniques, and datasets real and fictitious, Python veteran David Mertz teaches you the ins and outs of data preparation and the essential questions you should be asking of every piece of data you work with. Using a mixture of Python, R, and common command-line tools, Cleaning Data for Effective Data Science follows the data cleaning pipeline from start to end, focusing on helping you understand the principles underlying each step of the process. You'll look at data ingestion of a vast range of tabular, hierarchical, and other data formats, impute missing values, detect unreliable data and statistical anomalies, and generate synthetic features. The long-form exercises at the end of each chapter let you get hands-on with the skills you've acquired along the way, also providing a valuable resource for academic courses.

Who is this book for?

This book is designed to benefit software developers, data scientists, aspiring data scientists, teachers, and students who work with data. If you want to improve your rigor in data hygiene or are looking for a refresher, this book is for you. Basic familiarity with statistics, general concepts in machine learning, knowledge of a programming language (Python or R), and some exposure to data science are helpful.

What you will learn

  • Ingest and work with common data formats like JSON, CSV, SQL and NoSQL databases, PDF, and binary serialized data structures
  • Understand how and why we use tools such as pandas, SciPy, scikit-learn, Tidyverse, and Bash
  • Apply useful rules and heuristics for assessing data quality and detecting bias, like Benford's law and the 68-95-99.7 rule
  • Identify and handle unreliable data and outliers, examining z-score and other statistical properties
  • Impute sensible values into missing data and use sampling to fix imbalances
  • Use dimensionality reduction, quantization, one-hot encoding, and other feature engineering techniques to draw out patterns in your data
  • Work carefully with time series data, performing de-trending and interpolation

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Mar 31, 2021
Length: 498 pages
Edition : 1st
Language : English
ISBN-13 : 9781801071291
Category :
Languages :
Concepts :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $15.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Mar 31, 2021
Length: 498 pages
Edition : 1st
Language : English
ISBN-13 : 9781801071291
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$12.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$129.99 billed annually
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$179.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 147.97
Cleaning Data for Effective Data Science
$43.99
Machine Learning for Time-Series with Python
$54.99
Python Data Cleaning Cookbook
$48.99
Total $ 147.97 Stars icon
Visually different images

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.9
(17 Ratings)
5 star 94.1%
4 star 5.9%
3 star 0%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Alexander Afanasyev Apr 19, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
David did an incredible job covering the topics of data preparation and cleaning, I've learned quite a lot. Additionally, the outstanding choices of quotes, beautiful expressions, and anecdotes made this book an immensely enjoyable read. This goes directly to the list of book recommendations for my peers.
Amazon Verified review Amazon
chestnutj2000 Aug 26, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I had the opportunity to take several training courses with David as he was authoring and editing the book and work through many of the book's projects. My entire career really started 20 years ago by being able to show companies how powerful their data was...but it had to be mined and transformed to be useful. That was in the heyday of the RDBMS and 3-tier applications...Oracle, SQLServer. To keep up in today's world, you definitely need up upskill with Python as it opens up a world of easy integrations. And of course, Big Data is huge and driving every aspect of our life. From wearables that track fitness trends with massive amounts of physiological data to iOt devices to the infinite amount of transactional data on the web...Do yourself a favor and get straight to having a well-seasoned guide show you how to be practically effective. In learning any domain you can waste massive amounts of time and energy trying to sift through complexity without really knowing which info is important and practical. Let Dave show you!
Amazon Verified review Amazon
Matthew Emerick Apr 23, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
About This BookThis is a crucial book thanks to the deluge of data we currently have and use in our software applications. It looks at both structure and content issues with data of various types and the pros and cons of methods to clean it enough to be useful.Who Is This For?This is a useful book for anyone who imports data into their application, which is a good number of us. Given the Python and R code in the book, it’s good to have some knowledge and experience of one of these languages, but that’s about all you need to know. I personally recommend anything earning a computer science degree to work through this book around the same time they learn about data structures and algorithms.OrganizationThe overall organization of this book follows a standard data pipeline that you might set up for your application and what cleansing issues you might need to resolve along the way. This is, in my opinion, a great way to set up the book. Within each chapter, you have your topics, the exercises, and then a summary for the chapter. All in all, this is a well-organized book.Did This Book Succeed?I believe that the author did a tremendous job on a difficult and large topic. This is one of the most time-consuming and least talked about portions of any data pipeline for data science and machine learning tasks. It is also one of the most important. Anyone working in data or AI needs to read through this book and learn how to implement its processes in order to have cleaner and therefore more useful data.Rating and Final ThoughtsI give this book a 5 out of 5.It is useful, timely, and well organized. While it may not be set up like a cookbook or reference, it can use used as such. It is well suited as a textbook either for a course or self-study. It should be in anyone’s personal library, ready to be pulled when there is data to be cleansed.
Amazon Verified review Amazon
N Satpall May 27, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Certainly, some data is better, and some is worse. But almost all data is dirty and making it clean is a big challenge! This book goes a long way in helping meet this aspiration.It helps distinguish data quality from data utility - Data can be dirty but still be useful, and it can be clean but have little purpose. This book gives several techniques that can aid in evaluating the utility of data.The focus is not on learning to use tools, but to understand the purpose of data quality, and the concepts are applicable in any programming language used for data processing and machine learning.It covers data ingestion to look at structural matters, and anomalies, data quality, feature engineering, value imputation, and model-based cleaning to direct attention to content issues. There are plenty of illustrations that primarily use Python and associated tools, and R and its Tidyverse tools are mostly shown as code alternatives.This book is recommended for self-directed reader or in more structured academic, training, or certification courses. It avoids giving explicit solutions for mere copy-paste but presents a whole lot of exercises to enable readers in solving practical problems.
Amazon Verified review Amazon
dr t Apr 17, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Anyone who works with data regularly will know the amount of effort required in cleaning the data in preparation for modelling. Hence, I was pleasantly surprised to see many new things in this book that I had not come across, nor considered, previously.The book discusses the tools and techniques needed for various data processing tasks and has exercises at the end of each chapter to allow the reader to practice the ideas presented in the chapter. Along the way the reader will also pick up useful knowledge on topics such as MongoDB and insights into data types and there are also sections in the book which warrant bookmarking for future rereading (e.g. the section on misspelled words and the section on weights). Furthermore, the author also introduces commands (e.g. melt) and new ideas (e.g. Benfords Law) that this reader at least had not previously come across.The book is well-written in a humorous style, but does require some level of knowledge and likely isn't for beginners, however, software engineers and data scientists would definitely benefit from this book.By the end of the book, I definitely felt that I had acquired a much firmer understanding and a different perspective on the data cleaning process that is necessary when working on real-world tasks.Highly recommended.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.