Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Statistical Application Development with R and Python

You're reading from   Statistical Application Development with R and Python Develop applications using data processing, statistical models, and CART

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher
ISBN-13 9781788621199
Length 432 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Prabhanjan Narayanachar Tattar Prabhanjan Narayanachar Tattar
Author Profile Icon Prabhanjan Narayanachar Tattar
Prabhanjan Narayanachar Tattar
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Statistical Application Development with R and Python - Second Edition
Credits
About the Author
Acknowledgment
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
1. Data Characteristics FREE CHAPTER 2. Import/Export Data 3. Data Visualization 4. Exploratory Analysis 5. Statistical Inference 6. Linear Regression Analysis 7. Logistic Regression Model 8. Regression Models with Regularization 9. Classification and Regression Trees 10. CART and Beyond Index

Summary


In this chapter, we have visualized different types of graphs for different types of variables. We have also explored how to gain insights into data through the graphs. It is important to realize that, without a clear understanding of the data structure, the plots are meaningless if they are generated without exercising enough caution. The GIGO adage is very true and no rich visualization technique helps overcome this problem.

In the previous chapter, we learned the important methods of importing/exporting data, and visualized the data in different forms. Now that we have an understanding and visual insight of the data, we need to take the next step, namely quantitative analysis of the data. There are roughly two streams of analysis: exploratory and confirmative analysis. It is the former analysis technique that forms the center of the next chapter. As an instance, the scatter plot reveals whether there is a positive, negative, or no association between the two variables. If the association...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images