Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning Algorithms

You're reading from   Machine Learning Algorithms A reference guide to popular algorithms for data science and machine learning

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781785889622
Length 360 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Table of Contents (22) Chapters Close

Title Page
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
1. A Gentle Introduction to Machine Learning FREE CHAPTER 2. Important Elements in Machine Learning 3. Feature Selection and Feature Engineering 4. Linear Regression 5. Logistic Regression 6. Naive Bayes 7. Support Vector Machines 8. Decision Trees and Ensemble Learning 9. Clustering Fundamentals 10. Hierarchical Clustering 11. Introduction to Recommendation Systems 12. Introduction to Natural Language Processing 13. Topic Modeling and Sentiment Analysis in NLP 14. A Brief Introduction to Deep Learning and TensorFlow 15. Creating a Machine Learning Architecture

Chapter 11. Introduction to Recommendation Systems

Imagine an online shop with thousands of articles. If you're not a registered user, you'll probably see a homepage with some highlights, but if you've already bought some items, it would be interesting if the website showed products that you would probably buy, instead of a random selection. This is the purpose of a recommender system, and in this chapter, we're going to discuss the most common techniques to create such a system.

The basic concepts are users, items, and ratings (or an implicit feedback about the products, like the fact of having bought them). Every model must work with known data (like in a supervised scenario), to be able to suggest the most suitable items or to predict the ratings for all the items not evaluated yet.

We're going to discuss two different kinds of strategies:

  • User or content based
  • Collaborative filtering

The first approach is based on the information we have about users or products and its target is to associate...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images