Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Applied Unsupervised Learning with Python
Applied Unsupervised Learning with Python

Applied Unsupervised Learning with Python: Discover hidden patterns and relationships in unstructured data with Python

Arrow left icon
Profile Icon Benjamin Johnston Profile Icon Aaron Jones Profile Icon Christopher Kruger
Arrow right icon
$12.99 per month
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3 (2 Ratings)
Paperback May 2019 482 pages 1st Edition
eBook
$35.99
Paperback
$48.99
Subscription
Free Trial
Renews at $12.99p/m
Arrow left icon
Profile Icon Benjamin Johnston Profile Icon Aaron Jones Profile Icon Christopher Kruger
Arrow right icon
$12.99 per month
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3 (2 Ratings)
Paperback May 2019 482 pages 1st Edition
eBook
$35.99
Paperback
$48.99
Subscription
Free Trial
Renews at $12.99p/m
eBook
$35.99
Paperback
$48.99
Subscription
Free Trial
Renews at $12.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $15.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Applied Unsupervised Learning with Python

Introduction to Clustering

Learning Objectives

By the end of this chapter, you will be able to:

  • Distinguish between supervised learning and unsupervised learning
  • Explain the concept of clustering
  • Implement k-means clustering algorithms using built-in Python packages
  • Calculate the Silhouette Score for your data

In this chapter, we will have a look at the concept of clustering.

Introduction

Have you ever been asked to take a look at some data and come up empty handed? Maybe you were not familiar with the dataset, or maybe you didn't even know where to start. This may have been extremely frustrating, and even embarrassing, depending on who asked you to take care of the task.

You are not alone, and, interestingly enough, there are many times the data itself is simply too confusing to be made sense of. As you try and figure out what all those numbers in your spreadsheet mean, you're most likely mimicking what many unsupervised algorithms do when they try to find meaning in data. The reality is that many datasets in the real world don't have any rhyme or reason to them. You will be tasked with analyzing them with little background preparation. Don't fret, however – this book will prepare you so that you'll never be frustrated again when dealing with data exploration tasks.

For this book, we have developed some best-in-class...

Unsupervised Learning versus Supervised Learning

Unsupervised learning is one of the most exciting areas of development in machine learning today. If you have explored machine learning bookwork before, you are probably familiar with the common breakout of problems in either supervised or unsupervised learning. Supervised learning encompasses the problem set of having a labeled dataset that can be used to either classify (for example, predicting smokers and non-smokers if you're looking at a lung health dataset) or fit a regression line on (for example, predicting the sale price of a home based on how many bedrooms it has). This model most closely mirrors an intuitive human approach to learning.

If you wanted to learn how to not burn your food with a basic understanding of cooking, you could build a dataset by putting your food on the burner and seeing how long it takes (input) for your food to burn (output). Eventually, as you continue to burn your food, you will build a mental...

Clustering

Being able to find groups of similar data that exist in your dataset can be extremely valuable if you are trying to find its underlying meaning. If you were a store owner and you wanted to understand which customers are more valuable without a set idea of what valuable is, clustering would be a great place to start to find patterns in your data. You may have a few high-level ideas of what denotes a valuable customer, but you aren't entirely sure in the face of a large mountain of available data. Through clustering you can find commonalities among similar groups in your data. If you look more deeply at a cluster of similar people, you may learn that everyone in that group visits your website for longer periods of time than others. This can show you what the value is and also provides a clean sample size for future supervised learning experiments.

Identifying Clusters

The following figure shows two scatterplots:

Figures 1.2: Two distinct...

Introduction to k-means Clustering

Hopefully, by now, you can see that finding clusters is extremely valuable in a machine learning workflow. However, how can you actually find these clusters? One of the most basic yet popular approaches is by using a cluster analysis called k-means clustering. k-means works by searching for K clusters in your data and the workflow is actually quite intuitive – we will start with the no-math introduction to k-means, followed by an implementation in Python.

No-Math k-means Walkthrough

Here is the no-math algorithm of k-means clustering:

  1. Pick K centroids (K = expected distinct # of clusters).
  2. Randomly place K centroids anywhere amongst your existing training data.
  3. Calculate the Euclidean distance from each centroid to all the points in your training data.
  4. Training data points get grouped in with their nearest centroid.
  5. Amongst the data points grouped into each centroid, calculate the mean data point and move your...

Summary

In this chapter, we have explored what clustering is and why it is important in a variety of data challenges. Building upon this foundation of clustering knowledge, you implemented k-means, which is one of the simplest yet most popular methods of unsupervised learning. If you have reached this summary and can repeat what k-means does step-by-step to your fellow classmate, good job! If not, please go back and review the previous material – the content only grows in complexity from here. From here, we will be moving on to hierarchical clustering, which, in one configuration, reuses the centroid learning approach that we used in k-means. We will build upon this approach by outlining additional clustering methodologies and approaches in the next chapter.

Left arrow icon Right arrow icon

Key benefits

  • Learn how to select the most suitable Python library to solve your problem
  • Compare k-Nearest Neighbor (k-NN) and non-parametric methods and decide when to use them
  • Explore the applications of neural networks using real-world datasets

Description

Unsupervised learning is a useful and practical solution in situations where labeled data is not available. Applied Unsupervised Learning with Python guides you in learning the best practices for using unsupervised learning techniques in tandem with Python libraries and extracting meaningful information from unstructured data. The book begins by explaining how basic clustering works to find similar data points in a set. Once you are well-versed with the k-means algorithm and how it operates, you’ll learn what dimensionality reduction is and where to apply it. As you progress, you’ll learn various neural network techniques and how they can improve your model. While studying the applications of unsupervised learning, you will also understand how to mine topics that are trending on Twitter and Facebook and build a news recommendation engine for users. Finally, you will be able to put your knowledge to work through interesting activities such as performing a Market Basket Analysis and identifying relationships between different products. By the end of this book, you will have the skills you need to confidently build your own models using Python.

Who is this book for?

This course is designed for developers, data scientists, and machine learning enthusiasts who are interested in unsupervised learning. Some familiarity with Python programming along with basic knowledge of mathematical concepts including exponents, square roots, means, and medians will be beneficial.

What you will learn

  • Understand the basics and importance of clustering
  • Build k-means, hierarchical, and DBSCAN clustering algorithms from scratch with built-in packages
  • Explore dimensionality reduction and its applications
  • Use scikit-learn (sklearn) to implement and analyze principal component analysis (PCA) on the Iris dataset
  • Employ Keras to build autoencoder models for the CIFAR-10 dataset
  • Apply the Apriori algorithm with machine learning extensions (Mlxtend) to study transaction data

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : May 28, 2019
Length: 482 pages
Edition : 1st
Language : English
ISBN-13 : 9781789952292
Category :
Languages :

What do you get with a Packt Subscription?

Free for first 7 days. $15.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : May 28, 2019
Length: 482 pages
Edition : 1st
Language : English
ISBN-13 : 9781789952292
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$12.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$129.99 billed annually
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$179.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 144.97
Applied Unsupervised Learning with Python
$48.99
Hands-On Unsupervised Learning with Python
$51.99
Applied Supervised Learning with Python
$43.99
Total $ 144.97 Stars icon
Banner background image

Table of Contents

18 Chapters
Chapter 1 Chevron down icon Chevron up icon
Introduction to Clustering Chevron down icon Chevron up icon
Chapter 2 Chevron down icon Chevron up icon
Hierarchical Clustering Chevron down icon Chevron up icon
Chapter 3 Chevron down icon Chevron up icon
Neighborhood Approaches and DBSCAN Chevron down icon Chevron up icon
Chapter 4 Chevron down icon Chevron up icon
Dimension Reduction and PCA Chevron down icon Chevron up icon
Chapter 5 Chevron down icon Chevron up icon
Autoencoders Chevron down icon Chevron up icon
Chapter 6 Chevron down icon Chevron up icon
t-Distributed Stochastic Neighbor Embedding (t-SNE) Chevron down icon Chevron up icon
Chapter 7 Chevron down icon Chevron up icon
Topic Modeling Chevron down icon Chevron up icon
Chapter 8 Chevron down icon Chevron up icon
Market Basket Analysis Chevron down icon Chevron up icon
Chapter 9 Chevron down icon Chevron up icon
Hotspot Analysis Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
(2 Ratings)
5 star 50%
4 star 0%
3 star 0%
2 star 0%
1 star 50%
Dylan Beadle Jul 29, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book provides a great way to learn the nuances of unsupervised machine learning in a structured and clear manner. Thanks for this step-by-step guide.Disclaimer: I work with one of the authors.
Amazon Verified review Amazon
Richard J. Corrigan Oct 31, 2020
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
Links to other resources don't work, spelling and grammatical errors, and the content is nothing special.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.