- This exercise is about regularization priors. In the code that generates the data, change order=2 to another value, such as order=5. Then, fit model_p and plot the resulting curve. Repeat this, but now using a prior for beta with sd=100 instead of sd=1 and plot the resulting curve. How are both curves different? Try this out with sd=np.array([10, 0.1, 0.1, 0.1, 0.1]), too.
- Repeat the previous exercise but increase the amount of data to 500 data points.
- Fit a cubic model (order 3), compute WAIC and LOO, plot the results, and compare them with the linear and quadratic models.
- Use pm.sample_posterior_predictive() to rerun the PPC example, but this time, plot the values of y instead of the values of the mean.
- Read and run the posterior predictive example from PyMC3's documentation at https://pymc-devs.github.io/pymc3/notebooks/posterior_predictive.html. Pay special...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
South Africa
Thailand
Ukraine
Switzerland
Slovakia
Luxembourg
Hungary
Romania
Denmark
Ireland
Estonia
Belgium
Italy
Finland
Cyprus
Lithuania
Latvia
Malta
Netherlands
Portugal
Slovenia
Sweden
Argentina
Colombia
Ecuador
Indonesia
Mexico
New Zealand
Norway
South Korea
Taiwan
Turkey
Czechia
Austria
Greece
Isle of Man
Bulgaria
Japan
Philippines
Poland
Singapore
Egypt
Chile
Malaysia