





















































Most of the question answering systems are limited to answering questions independently. But usually while having a conversation there happens to be a few interconnected questions. Also, it is more common to seek information by engaging in conversations involving a series of interconnected questions and answers. CoQA is a Conversational Question Answering dataset developed by the researchers at Stanford University to address this limitation and working in the direction of conversational AI systems.
The CoQA challenge launched in August 2018, has received a great deal of attention and has become one of the most competitive benchmarks. Post the release of Google’s BERT models, last November, a lot of progress has been made, which has lifted the performance of all the current systems. Microsoft Research Asia’ state-of-the-art ensemble system “BERT+MMFT+ADA” achieved 87.5% in-domain F1 accuracy and 85.3% out-of-domain F1 accuracy. These numbers are now approaching human performance.
We often find ourselves in need of reading multiple documents to find out about the facts about the world. For instance, one might wonder, in which state was Yahoo! founded? Or, does Stanford have more computer science researchers or Carnegie Mellon University? Or simply, How long do I need to run to burn the calories of a Big Mac? The web does contain the answers to many of these questions, but the content is not always in a readily available form, or even available at one place.
To successfully answer these questions, there is a need for a QA system that finds the relevant supporting facts and to compare them in a meaningful way to yield the final answer. HotpotQA is a large-scale question answering (QA) dataset that contains about 113,000 question-answer pairs. These questions require QA systems to sift through large quantities of text documents for generating an answer.
While collecting the data for HotpotQA, the researchers have annotators to specify the supporting sentences they used for arriving at the final answer.
To conclude, CoQA considers those questions that would arise in a natural dialog given a shared context, with challenging questions that require reasoning beyond one dialog turn. While, HotpotQA focuses on multi-document reasoning, and challenges the research community for developing new methods to acquire supporting information.
To know more about this news, check out the post by Stanford.
Stanford experiment results on how deactivating Facebook affects social welfare measures
Thank Stanford researchers for Puffer, a free and open source live TV streaming service that uses AI to improve video-streaming algorithms
Stanford researchers introduce DeepSolar, a deep learning framework that mapped every solar panel in the US