Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Statistical Application Development with R and Python

You're reading from   Statistical Application Development with R and Python Develop applications using data processing, statistical models, and CART

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher
ISBN-13 9781788621199
Length 432 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Prabhanjan Narayanachar Tattar Prabhanjan Narayanachar Tattar
Author Profile Icon Prabhanjan Narayanachar Tattar
Prabhanjan Narayanachar Tattar
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Statistical Application Development with R and Python - Second Edition
Credits
About the Author
Acknowledgment
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
1. Data Characteristics FREE CHAPTER 2. Import/Export Data 3. Data Visualization 4. Exploratory Analysis 5. Statistical Inference 6. Linear Regression Analysis 7. Logistic Regression Model 8. Regression Models with Regularization 9. Classification and Regression Trees 10. CART and Beyond Index

Chapter 7. Logistic Regression Model

In this chapter, we will consider regression models when the regressand is dichotomous or binary in nature. The data is of the form , where the dependent variable Yi, i = 1, …, n are the observed binary output assumed to be independent (in the statistical sense) of each other, and the vector Xi, i = 1,…, n, are the covariates (independent variables in the sense of a regression problem) associated with Yi.

In the previous chapter, we considered linear regression models where the regressand was assumed to be continuous along with the assumption of normality for the error distribution. Here, we will consider a Gaussian (normal) model for the binary regression model, which is more widely known as the probit model. A more generic model has emerged during the past four decades in the form of logistic regression model. We will consider the logistic regression model for the rest of the chapter. The approach in this chapter will be on the following topics:

  • The binary...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images