Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Unity 5.x Game AI Programming Cookbook

You're reading from   Unity 5.x Game AI Programming Cookbook Build and customize a wide range of powerful Unity AI systems with over 70 hands-on recipes and techniques

Arrow left icon
Product type Paperback
Published in Mar 2016
Publisher Packt
ISBN-13 9781783553570
Length 278 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Jorge Palacios Jorge Palacios
Author Profile Icon Jorge Palacios
Jorge Palacios
Jorge Elieser P Garrido Jorge Elieser P Garrido
Author Profile Icon Jorge Elieser P Garrido
Jorge Elieser P Garrido
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Unity 5.x Game AI Programming Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Behaviors – Intelligent Movement FREE CHAPTER 2. Navigation 3. Decision Making 4. Coordination and Tactics 5. Agent Awareness 6. Board Games AI 7. Learning Techniques 8. Miscellaneous Index

Working with fuzzy logic


There are times when we have to deal with gray areas, instead of binary-based values, to make decisions, and fuzzy logic is a set of mathematical techniques that help us with this task.

Imagine that we're developing an automated driver. A couple of available actions are steering and speed control, both of which have a range of degrees. Deciding how to take a turn, and at which speed, is what will make our driver different and possibly smarter. That's the type of gray area that fuzzy logic helps represent and handle.

Getting ready

This recipe requires a set of states indexed by continuous integer numbers. As this representation varies from game to game, we handle the raw input from such states, along with their fuzzification, in order to have a good general-purpose fuzzy decision maker. Finally, the decision maker returns a set of fuzzy values representing the degree of membership of each state.

How to do it...

We will create two base classes and our fuzzy decision maker...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images