Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
The Deep Learning Workshop
The Deep Learning Workshop

The Deep Learning Workshop: Learn the skills you need to develop your own next-generation deep learning models with TensorFlow and Keras

Arrow left icon
Profile Icon Mirza Rahim Baig Profile Icon Thomas Joseph Profile Icon Nipun Sadvilkar Profile Icon Mohan Kumar Silaparasetty Profile Icon Anthony So +1 more Show less
Arrow right icon
£26.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.5 (4 Ratings)
eBook Jul 2020 474 pages 1st Edition
eBook
£26.99
Paperback
£32.99
Subscription
Free Trial
Renews at £9.99p/m
Arrow left icon
Profile Icon Mirza Rahim Baig Profile Icon Thomas Joseph Profile Icon Nipun Sadvilkar Profile Icon Mohan Kumar Silaparasetty Profile Icon Anthony So +1 more Show less
Arrow right icon
£26.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.5 (4 Ratings)
eBook Jul 2020 474 pages 1st Edition
eBook
£26.99
Paperback
£32.99
Subscription
Free Trial
Renews at £9.99p/m
eBook
£26.99
Paperback
£32.99
Subscription
Free Trial
Renews at £9.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Key benefits

  • Understand how to implement deep learning with TensorFlow and Keras
  • Learn the fundamentals of computer vision and image recognition
  • Study the architecture of different neural networks

Description

Are you fascinated by how deep learning powers intelligent applications such as self-driving cars, virtual assistants, facial recognition devices, and chatbots to process data and solve complex problems? Whether you are familiar with machine learning or are new to this domain, The Deep Learning Workshop will make it easy for you to understand deep learning with the help of interesting examples and exercises throughout. The book starts by highlighting the relationship between deep learning, machine learning, and artificial intelligence and helps you get comfortable with the TensorFlow 2.0 programming structure using hands-on exercises. You’ll understand neural networks, the structure of a perceptron, and how to use TensorFlow to create and train models. The book will then let you explore the fundamentals of computer vision by performing image recognition exercises with convolutional neural networks (CNNs) using Keras. As you advance, you’ll be able to make your model more powerful by implementing text embedding and sequencing the data using popular deep learning solutions. Finally, you’ll get to grips with bidirectional recurrent neural networks (RNNs) and build generative adversarial networks (GANs) for image synthesis. By the end of this deep learning book, you’ll have learned the skills essential for building deep learning models with TensorFlow and Keras.

Who is this book for?

If you are interested in machine learning and want to create and train deep learning models using TensorFlow and Keras, this workshop is for you. A solid understanding of Python and its packages, along with basic machine learning concepts, will help you to learn the topics quickly.

What you will learn

  • Understand how deep learning, machine learning, and artificial intelligence are different
  • Develop multilayer deep neural networks with TensorFlow
  • Implement deep neural networks for multiclass classification using Keras
  • Train CNN models for image recognition
  • Handle sequence data and use it in conjunction with RNNs
  • Build a GAN to generate high-quality synthesized images

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jul 31, 2020
Length: 474 pages
Edition : 1st
Language : English
ISBN-13 : 9781839210563
Category :
Languages :
Concepts :
Tools :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Jul 31, 2020
Length: 474 pages
Edition : 1st
Language : English
ISBN-13 : 9781839210563
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
£9.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
£99.99 billed annually
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just £5 each
Feature tick icon Exclusive print discounts
£139.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 6,500+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just £5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total £ 99.97
The Deep Learning with PyTorch Workshop
£29.99
The Reinforcement Learning Workshop
£36.99
The Deep Learning Workshop
£32.99
Total £ 99.97 Stars icon
Visually different images

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.5
(4 Ratings)
5 star 50%
4 star 50%
3 star 0%
2 star 0%
1 star 0%
Luis René Mata Quiñonez Nov 09, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This is a very good book on deep learning. It is very focused on the most important DL applications by using Keras and TensorFlow. It provides a hands-on approach where examples and models can be easily translated to solve different problems.
Amazon Verified review Amazon
James Le Nov 03, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The book makes it easy for you to understand deep learning with the help of interesting examples and exercises throughout. There are 7 chapters in total:- Chapter 1 discusses the practical applications of deep learning.- Chapter 2 teaches you the structure of artificial neural networks.- Chapter 3 covers image processing, how it works, and how that knowledge can be applied to Convolutional Neural Networks (CNNs).- Chapter 4 introduces you to the world of Natural Language Processing.- Chapter 5 shows you how to work on a classic sequence processing task—stock price prediction.- Chapter 6 reviews RNNs' practical drawbacks and how Long Short Term Memory (LSTM) models help overcome them.- Chapter 7 introduces you to generative adversarial networks (GANs) and their basic components.All the chapters provide hands-on exercises for you to work on (using TensorFlow 2.0 and Keras). With more than 400 pages of content, this is a comprehensive coverage of deep learning fundamentals from a programming-intensive perspective!
Amazon Verified review Amazon
Hakuna Matata Oct 17, 2020
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
This is a good introductory book on deep learning - gives you a good tour of all the core fundamentals. Also, I loved the fact that you could try out the examples and code snippets using binger.org infrastructure - this way you don't have to mess with setting up your own environment to run and test the code snippets.One nit is no mention of any of the latest transformer architecture or modern language models such as BERT and RoBERTa.
Amazon Verified review Amazon
Jackie K. Dec 13, 2020
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
This is a decent intro to deep learning that covers Tensorflow and Keras. I was torn between 3 stars and 4. The content from what I can see is good from a nuts and bolts perspective, but there are a few negative aspects to the book. I will just cover one, because I think it is the most important. Many mistakes are made in science by a lack of representation. For example chatbots, don't recognize women's voices well, and there have also been issues with the recognition of various skin colors because models have been trained on bias datasets. None of these issues were brought up in the book even in passing with information on where to learn more. From a nuts and bolts perspective this book is a 4. From a comprehensive intro perspective this book is 3.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.