Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
R Machine Learning By Example

You're reading from   R Machine Learning By Example Understand the fundamentals of machine learning with R and build your own dynamic algorithms to tackle complicated real-world problems successfully

Arrow left icon
Product type Paperback
Published in Mar 2016
Publisher
ISBN-13 9781784390846
Length 340 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Raghav Bali Raghav Bali
Author Profile Icon Raghav Bali
Raghav Bali
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

R Machine Learning By Example
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Preface
1. Getting Started with R and Machine Learning FREE CHAPTER 2. Let's Help Machines Learn 3. Predicting Customer Shopping Trends with Market Basket Analysis 4. Building a Product Recommendation System 5. Credit Risk Detection and Prediction – Descriptive Analytics 6. Credit Risk Detection and Prediction – Predictive Analytics 7. Social Media Analysis – Analyzing Twitter Data 8. Sentiment Analysis of Twitter Data Index

Association rule mining


We will now be implementing the final technique in market basket analysis for finding out association rules between itemsets to detect and predict product purchase patterns which can be used for product recommendations and suggestions. We will be notably using the Apriori algorithm from the arules package which uses an implementation for generating frequent itemsets first, which we discussed earlier. Once it has the frequent itemsets, the algorithm generates necessary rules based on parameters such as support, confidence, and lift. We will also show how you can visualize and interact with these rules using the arulesViz package. The code for this implementation is in the ch3_association rule mining.R file which you can directly load and follow the book.

Loading dependencies and data

We will first load the necessary package and data dependencies. Do note that we will be using the Groceries dataset which we discussed earlier in the section dealing with advanced contingency...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images