Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Principles of Data Science

You're reading from   Principles of Data Science Mathematical techniques and theory to succeed in data-driven industries

Arrow left icon
Product type Paperback
Published in Dec 2016
Publisher Packt
ISBN-13 9781785887918
Length 388 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Table of Contents (20) Chapters Close

Principles of Data Science
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. How to Sound Like a Data Scientist FREE CHAPTER 2. Types of Data 3. The Five Steps of Data Science 4. Basic Mathematics 5. Impossible or Improbable – A Gentle Introduction to Probability 6. Advanced Probability 7. Basic Statistics 8. Advanced Statistics 9. Communicating Data 10. How to Tell If Your Toaster Is Learning – Machine Learning Essentials 11. Predictions Don't Grow on Trees – or Do They? 12. Beyond the Essentials 13. Case Studies Index

Decision trees


Decision trees are supervised models that can either preform regression or classification.

Let's take a look at some major league baseball player data from 1986-1987. Each dot represents a single player in the league:

  • Years (x axis): Number of years played in the major leagues

  • Hits (y axis): Number of hits the player had in the previous year

  • Salary (color): Low salary is blue/green, high salary is red/yellow

The preceding data is our training data. The idea is to build a model that predicts the salary of future players based on Years and Hits. A decision tree aims to make splits on our data in order to segment the data points that act similarly to each other, but differently to the others. The tree makes multiples of these splits in order to make the most accurate prediction possible. Let's see a tree built for the preceding data:

Reading from top to bottom:

  • The first split is Years < 4.5, when a splitting rule is true, you follow the left branch. When a splitting rule is false...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images