Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Practical Machine Learning

You're reading from   Practical Machine Learning Learn how to build Machine Learning applications to solve real-world data analysis challenges with this Machine Learning book – packed with practical tutorials

Arrow left icon
Product type Paperback
Published in Jan 2016
Publisher Packt
ISBN-13 9781784399689
Length 468 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sunila Gollapudi Sunila Gollapudi
Author Profile Icon Sunila Gollapudi
Sunila Gollapudi
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Practical Machine Learning
Credits
Foreword
About the Author
Acknowledgments
About the Reviewers
www.PacktPub.com
Preface
1. Introduction to Machine learning FREE CHAPTER 2. Machine learning and Large-scale datasets 3. An Introduction to Hadoop's Architecture and Ecosystem 4. Machine Learning Tools, Libraries, and Frameworks 5. Decision Tree based learning 6. Instance and Kernel Methods Based Learning 7. Association Rules based learning 8. Clustering based learning 9. Bayesian learning 10. Regression based learning 11. Deep learning 12. Reinforcement learning 13. Ensemble learning 14. New generation data architectures for Machine learning Index

Chapter 9. Bayesian learning

In this chapter, we will go back to covering an important, statistical-based method of learning called the Bayesian method learning, and in particular, the Naïve Bayes algorithm among others. The statistical models generally have an explicit probability model, which reveals the probability of an instance belonging to a particular class rather than just classification while solving a classification problem. Before taking a deep dive into the Bayesian learning, you will learn some important concepts under statistics such as probability distribution and the Bayes theorem which is the heart of Bayesian learning.

Bayesian learning is a supervised learning technique where the goal is to build a model of the distribution of class labels that have a concrete definition of the target attribute. Naïve Bayes is based on applying Bayes' theorem with the naïve assumption of independence between each and every pair of features.

You will learn the basics and advanced concepts...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images