Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Practical Computer Vision

You're reading from   Practical Computer Vision Extract insightful information from images using TensorFlow, Keras, and OpenCV

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788297684
Length 234 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Abhinav Dadhich Abhinav Dadhich
Author Profile Icon Abhinav Dadhich
Abhinav Dadhich
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Title Page
Copyright and Credits
Dedication
Packt Upsell
Contributors
Preface
1. A Fast Introduction to Computer Vision FREE CHAPTER 2. Libraries, Development Platform, and Datasets 3. Image Filtering and Transformations in OpenCV 4. What is a Feature? 5. Convolutional Neural Networks 6. Feature-Based Object Detection 7. Segmentation and Tracking 8. 3D Computer Vision 9. Mathematics for Computer Vision 10. Machine Learning for Computer Vision 1. Other Books You May Enjoy Index

Index

A

  • activation / Convolutional Neural Networks
  • Anaconda
    • installing / Installing Anaconda
    • URL / Installing Anaconda
  • applications
    • drones / Applications
    • image editing / Applications
    • satellites or space vehicles / Applications
    • Augmented Reality (AR) / Applications
  • Augmented Reality (AR) / Applications

B

  • Bayes theorem / Bayes theorem
  • Bernoulli distribution / Bernoulli distribution
  • Binomial distribution / Binomial distribution

C

  • camera intrinsic matrix / Image formation
  • challenges, segmentation
    • noisy boundaries / Challenges in segmentation 
    • clustered scene / Challenges in segmentation 
  • challenges, tracking
    • about / Tracking
    • object occlusion / Challenges in tracking
    • fast movement / Challenges in tracking
    • change of shape / Challenges in tracking
    • false positives / Challenges in tracking
  • CIFAR-10 / CIFAR-10
  • classifier parameters
    • reference / Methods for object detection
  • CMake
    • installation link / OpenCV build from source
  • CNN architectures
    • about / Popular CNN architectures
    • VGGNet / VGGNet
    • inception models / Inception models
    • ResNet model / ResNet model
  • COCO
    • about / MSCOCO
    • URL / MSCOCO
    • RGB-D dataset / TUM RGB-D dataset
  • computer vision
    • about / What constitutes computer vision?
    • image classification / Computer vision is everywhere
    • object detection / Computer vision is everywhere
    • image geometry / Computer vision is everywhere
    • image segmentation / Computer vision is everywhere
    • image generation / Computer vision is everywhere
    • image transformation / Computer vision is everywhere
  • conditional distribution / Conditional distribution
  • convolution / The convolution layer
  • Convolutional Neural Networks (CNNs)
    • about / Convolutional Neural Networks
    • convolution layer / The convolution layer
    • activation layer / The activation layer
    • pooling layer / The pooling layer
    • fully connected layer / The fully connected layer
    • Batch Normalization / Batch Normalization
    • dropout / Dropout
    • using / CNN in practice 
    • fashion-MNIST classifier training code / Fashion-MNIST classifier training code
    • analyzing / Analysis of CNNs 
    • transfer learning / Transfer learning
  • curse of dimensionality / Dimensionality's curse

D

  • datasets
    • about / Datasets
    • ImageNet / ImageNet
    • MNIST / MNIST
    • CIFAR-10 / CIFAR-10
    • Pascal VOC / Pascal VOC
    • MSCOCO / MSCOCO
    • requisites / Datasets and libraries required
    • download link / Dataset and libraries
  • deep learning-based object detection
    • about / Deep learning-based object detection
    • two-stage detectors / Deep learning-based object detection, Two-stage detectors
    • one-stage detectors / Deep learning-based object detection, One-stage detectors
    • faster R-CNN with ResNet-101 / Demo – Faster R-CNN with ResNet-101
  • deep SORT
    • reference / Deep SORT
  • Directed Acyclic Graph (DAG) / A simple neural network

E

  • eigen value / Computing eigen values and eigen vectors
  • eigen vectors / Computing eigen values and eigen vectors
  • Epipolar Geometry / Image formation
  • Euclidean coordinate system / Image formation

F

  • Faster R-CNN / Deep learning-based object detection
  • Fast Fourier Transform (FFT) / MOSSE tracker
  • feature
    • use cases / Features use cases 
    • datasets and libraries / Datasets and libraries
    • importance / Why are features important?
    • Harris corner detection / Harris Corner Detection
  • feedforward networks / A simple neural network
  • filters
    • about / Introduction to filters, The convolution layer
    • linear filters / Linear filters
    • non-linear filters / Non-linear filters 
    • image gradients / Image gradients
  • freezing a model / Transfer learning
  • fully convolutional network (FCN) / CNNs for segmentation
  • fundamental matrix / Image formation

G

  • Gaussian distribution / Gaussian distribution
  • Gaussian filter / Smoothing a photo 
  • gradient descent / A simple neural network

H

  • Hessian matrix / Hessian matrix

I

  • image
    • manipulation / Image manipulation
    • gradients / Image gradients
    • transformation / Transformation of an image
    • translation / Translation
    • rotation / Rotation 
    • affine transform / Affine transform 
    • formation / Image formation
    • aligning / Aligning images 
  • image color conversions
    • grayscale / Image color conversions
    • HSV and HLS / Image color conversions
    • LAB color space / Image color conversions
  • ImageNet / ImageNet
  • Imagenet Large Scale Visual Recognition Challenge (ILSVRC) / VGGNet
  • image operations
    • about / Getting started
    • image, reading / Reading an image 
    • image color, conversions / Image color conversions
  • image pyramids / Image pyramids
  • Inertial Measurement Units (IMU) / Applications
  • input
    • preprocessing / Preprocessing
  • input processing
    • normalization / Normalization
    • noise / Noise
  • Inverse Fast Fourier Transform (IFFT) / MOSSE tracker

J

  • Joint distribution / Joint distribution
  • Jupyter notebook / Jupyter notebook

K

  • Keras / Keras for deep learning 
  • kernel / 2D linear filters

L

  • learning
    • overview / A rolling-ball view of learning
  • libraries
    • installing / Libraries and installation
    • Anaconda, installing / Installing Anaconda
    • OpenCV, installing / Installing OpenCV
    • TensorFlow / TensorFlow for deep learning
    • keras / Keras for deep learning 
    • requisites / Datasets and libraries required
  • linear algebra
    • about / Linear algebra
    • vectors / Vectors
  • linear filter
    • about / Linear filters
    • 2D Linear Filters / 2D linear filters
    • box filters / Box filters
    • linear filters, properties / Properties of linear filters
  • loop closure / Visual SLAM

M

  • machine learning
    • about / What is machine learning?
    • techniques / Kinds of machine learning techniques
  • machine learning techniques
    • supervised learning / Supervised learning
    • unsupervised learning / Unsupervised learning
  • marginal distribution / Marginal distribution
  • Matplotlib / Matplotlib
  • matrices
    • about / Matrices
    • operations / Operations on matrices
    • properties / Matrix properties
  • matrices, operations
    • addition / Addition
    • subtraction / Subtraction
    • multiplication / Matrix multiplication
  • matrix properties
    • transpose / Transpose
    • identity matrix / Identity matrix
    • diagonal matrix / Diagonal matrix
    • symmetric matrix / Symmetric matrix
    • trace of matrix / Trace of a matrix
    • determinant / Determinant
    • norm of matrix / Norm of a matrix
    • inverse of matrix / Getting the inverse of a matrix 
    • orthogonality / Orthogonality
  • mean / Gaussian distribution
  • Minimum Output Sum of Squared Error (MOSSE)
    • reference / MOSSE tracker
  • MNIST / MNIST
  • model's performance evaluation
    • about / Evaluation
    • precision value / Precision
    • recall / Recall
    • F-measure / F-measure
  • Multiple Object Tracking (MOT) problem / Deep SORT

N

  • neural networks
    • about / Introduction to neural networks, A simple neural network
    • convolution operation / Revisiting the convolution operation
  • non-linear filters
    • about / Non-linear filters 
    • photo, smoothing / Smoothing a photo 
    • histogram, equalization / Histogram equalization
    • median filter / Median filter 
  • non-maximal suppression / One-stage detectors
  • NumPy / NumPy

O

  • object detection
    • about / Introduction to object detection
    • challenges / Challenges in object detection
    • libraries / Dataset and libraries used
    • dataset / Dataset and libraries used
    • methods / Methods for object detection
    • deep learning-based object detection / Deep learning-based object detection
  • one-stage detectors
    • about / One-stage detectors, Demo
    • demo / Demo
  • OpenCV
    • URL / Installing OpenCV
    • installing / Installing OpenCV
    • Anaconda, used for installation / OpenCV Anaconda installation 
    • building, from source / OpenCV build from source
    • about / Opencv FAQs
  • ORB SLAM2
    • reference / Visual SLAM
  • oriented BRIEF (ORB) / Aligning images 

P

  • Pascal VOC
    • about / Pascal VOC
    • URL / Pascal VOC
  • pixels / Image manipulation, Why are features important?
  • Poisson distribution / Poisson distribution
  • postprocessing / Postprocessing
  • Probability Density Function (PDF) / What are random variables?
  • probability distributions
    • Bernoulli distribution / Bernoulli distribution
    • Binomial distribution / Binomial distribution
    • Poisson distribution / Poisson distribution
    • uniform distribution / Uniform distribution
    • Gaussian distribution / Gaussian distribution
    • Joint distribution / Joint distribution
    • Marginal distribution / Marginal distribution
    • conditional distribution / Conditional distribution
  • Probability Mass Function (PMF) / What are random variables?
  • probability theory / Introduction to probability theory

R

  • random variables
    • about / What are random variables?
    • expectation / Expectation
    • variance / Variance
    • probability distributions / Probability distributions
    • Bayes theorem / Bayes theorem
  • receptive field / The convolution layer
  • Region of Interests (ROI) / Two-stage detectors
  • Region Proposal Network (RPN) / Two-stage detectors
  • RGB-D dataset
    • URL / TUM RGB-D dataset

S

  • SciPy / SciPy
  • segmentation
    • about / Segmentation
    • challenges / Challenges in segmentation 
    • CNNs / CNNs for segmentation
    • FCN, implementing / Implementation of FCN
  • Simple Online and Realtime Tracking / Deep SORT
  • Single Shot Multibox Detector (SSD) / Deep learning-based object detection, One-stage detectors
  • Singular Value Decomposition (SVD) / Singular Value Decomposition
  • supervised learning
    • about / Supervised learning
    • classification / Classification
    • regression / Regression

T

  • TensorFlow / TensorFlow for deep learning
  • tracking
    • about / Tracking
    • challenges / Challenges in tracking
    • object tracking, methods / Methods for object tracking
    • MOSSE tracker / MOSSE tracker
    • deep SORT / Deep SORT
  • tracking by detection / Methods for object tracking
  • training / A simple neural network
  • transfer learning / Transfer learning

U

  • Uniform distribution / Uniform distribution
  • unsupervised learning / Unsupervised learning

V

  • variance / Gaussian distribution
  • vectors
    • addition / Addition
    • subtraction / Subtraction
    • multiplication / Vector multiplication
    • norm / Vector norm
    • orthogonality / Orthogonality
  • Visual Odometry (VO)
    • about / Visual odometry
    • challenges / Visual odometry
    • process / Visual odometry
  • Visual Simultaneous Localization and Mapping (vSLAM) / Dataset and libraries, Visual SLAM

W

  • weights / Convolutional Neural Networks
  • window / Harris Corner Detection
lock icon The rest of the chapter is locked
arrow left Previous Section
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images