Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Data Mining with Python

You're reading from   Learning Data Mining with Python Use Python to manipulate data and build predictive models

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781787126787
Length 358 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Robert Layton Robert Layton
Author Profile Icon Robert Layton
Robert Layton
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
1. Getting Started with Data Mining FREE CHAPTER 2. Classifying with scikit-learn Estimators 3. Predicting Sports Winners with Decision Trees 4. Recommending Movies Using Affinity Analysis 5. Features and scikit-learn Transformers 6. Social Media Insight using Naive Bayes 7. Follow Recommendations Using Graph Mining 8. Beating CAPTCHAs with Neural Networks 9. Authorship Attribution 10. Clustering News Articles 11. Object Detection in Images using Deep Neural Networks 12. Working with Big Data 13. Next Steps...

Summary


In this chapter, we looked at features and transformers and how they can be used in the data mining pipeline. We discussed what makes a good feature and how to algorithmically choose good features from a standard set. However, creating good features is more art than science and often requires domain knowledge and experience.

We then created our own transformer using an interface that allows us to use it in scikit-learn's helper functions. We will be creating more transformers in later chapters so that we can perform effective testing using existing functions.

To take the lessons learned in this chapter further, I recommend signing up to the online data mining competition website Kaggle.com and trying some of the competitions. Their recommended starting place is the Titanic dataset, which allows you to practice the feature creation aspects of this chapter. Many of the features are not numerical, requiring you to convert them to numerical features before applying a data mining algorithm...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images