Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Deep Learning with TensorFlow

You're reading from   Hands-On Deep Learning with TensorFlow Uncover what is underneath your data!

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781787282773
Length 174 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Dan Van Boxel Dan Van Boxel
Author Profile Icon Dan Van Boxel
Dan Van Boxel
Arrow right icon
View More author details
Toc

Index

A

  • activation functions / Sigmoid function

B

  • backpropagation / Backpropagation
  • basic neural networks
    • about / Basic neural networks
    • log function / Log function
    • sigmoid function / Sigmoid function

C

  • CoCalc
    • TensorFlow, installing via / Installing via CoCalc
    • reference / Installing via CoCalc
  • computations
    • defining / Simple computations
    • scalars, defining / Defining scalars and tensors
    • tensors, defining / Defining scalars and tensors
    • on tensors / Computations on tensors
    • performing / Doing computation
    • intermediate values, viewing / Viewing and substituting intermediate values
    • intermediate values, submitting / Viewing and substituting intermediate values
  • convolutional and pooling layer combo
    • adding / Adding convolutional and pooling layer combo
  • convolutional layer
    • about / Convolutional layer motivation
    • multiple features, extracting / Multiple features extracted
  • convolutional layer application
    • implementing / Convolutional layer application
    • about / Exploring the convolution layer
  • convolutional neural network
    • about / Convolutional neural network
  • Convolutional Neural Network (CNN)
    • fonts, classifying / CNN to classify our fonts
  • Convolutional Neural Networks (CNNs)
    • about / Convolutional Neural Networks (CNNs) in Learn

D

  • deep CNN
    • about / Deep CNN
    • convolutional and pooling layer combo, adding / Adding convolutional and pooling layer combo
  • deep convolutional neural network / Deep convolutional neural network
  • deeper CNN
    • layers, adding / Adding a layer to another layer of CNN
    • conclusion / Wrapping up deep CNN
  • deep neural network
    • about / The multiple hidden layer model, Deep neural network
  • Dense Neural Network (DNN)
    • about / DNNs
    • CNNs / Convolutional Neural Networks (CNNs) in Learn
    • weights, extracting / Extracting weights

E

  • epoch / Training the model

F

  • font classification dataset / Introducing the font classification dataset

H

  • hyper parameter optimization / Exploring the multiple hidden layer model

I

  • installation page, TensorFlow / TensorFlow – the installation page

J

  • Jupyter / Installing via CoCalc

K

  • Keras
    • URL / TensorFlow learn

L

  • log function / Log function
  • logistic regression / Logistic regression, Logistic regression
    • about / Logistic regression model building
    • implementing / Getting data ready
  • logistic regression model
    • weights, viewing of / Understanding weights of the model
    • about / The logistic regression model
  • logistic regression model building
    • about / Logistic regression model building
    • font classification dataset / Introducing the font classification dataset
  • logistic regression training
    • about / Logistic regression training
    • loss function, developing / Developing the loss function
    • model, training / Training the model
    • model accuracy, evaluating / Evaluating the model accuracy

M

  • main page, TensorFlow / TensorFlow – main page
  • models
    • about / A quick review of all the models
    • logistic regression model / The logistic regression model
    • single hidden layer neural network model / The single hidden layer neural network model
    • deep neural network / Deep neural network
    • convolutional neural network / Convolutional neural network
    • deep convolutional neural network / Deep convolutional neural network
  • multiple hidden layer model
    • about / The multiple hidden layer model
    • exploring / Exploring the multiple hidden layer model
    • results / Results of the multiple hidden layer
  • multiple hidden layers graph / Understanding the multiple hidden layers graph

N

  • neuron / Sigmoid function

P

  • pip
    • TensorFlow, installing via / Installing via pip
  • pooling layer application
    • about / Pooling layer application
  • pooling layers
    • about / Pooling layer motivation
    • max pooling layers / Max pooling layers

R

  • Recurrent Neural Networks (RNNs)
    • about / Exploring RNNs, Understanding RNNs
    • weights, modeling / Modeling the weights
    • using / Modeling the weights
  • research evaluation
    • about / Research evaluation

S

  • same padding
    • about / Convolutional layer motivation
  • scalars
    • defining / Defining scalars and tensors
  • sigmoid function / Sigmoid function
  • single hidden layer model
    • about / Single hidden layer model, Single hidden layer explained
    • exploring / Exploring the single hidden layer model
  • single hidden layer neural network model
    • about / The single hidden layer neural network model
  • Stochastic Gradient Descent (SGD)
    • about / DNNs

T

  • TensorFlow
    • installing / Installing TensorFlow
    • main page / TensorFlow – main page
    • installation page / TensorFlow – the installation page
    • installing, via pip / Installing via pip
    • installing, via CoCalc / Installing via CoCalc
    • future / The future of TensorFlow
    • projects / Some more TensorFlow projects
  • TensorFlow learn
    • about / TensorFlow learn
    • reference link / TensorFlow learn
    • setup / Setup
    • logistic regression / Logistic regression
  • TensorFlow model
    • building / Building a TensorFlow model
  • TensorFlow Slim
    • reference link / TensorFlow learn
  • tensors
    • defining / Defining scalars and tensors
    • computations on / Computations on tensors

V

  • variable tensors / Variable tensors

W

  • weights
    • modeling / Modeling the weights
    • extracting / Extracting weights
  • wheel file / TensorFlow – the installation page
lock icon The rest of the chapter is locked
arrow left Previous Section
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images