Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Game Physics Cookbook

You're reading from   Game Physics Cookbook Discover over 100 easy-to-follow recipes to help you implement efficient game physics and collision detection in your games

Arrow left icon
Product type Paperback
Published in Mar 2017
Publisher Packt
ISBN-13 9781787123663
Length 480 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Gabor Szauer Gabor Szauer
Author Profile Icon Gabor Szauer
Gabor Szauer
Arrow right icon
View More author details
Toc

Table of Contents (27) Chapters Close

Game Physics Cookbook
Credits
About the Author
Acknowledgements
About the Reviewer
Acknowledgements
www.PacktPub.com
Customer Feedback
Preface
1. Vectors FREE CHAPTER 2. Matrices 3. Matrix Transformations 4. 2D Primitive Shapes 5. 2D Collisions 6. 2D Optimizations 7. 3D Primitive Shapes 8. 3D Point Tests 9. 3D Shape Intersections 10. 3D Line Intersections 11. Triangles and Meshes 12. Models and Scenes 13. Camera and Frustum 14. Constraint Solving 15. Manifolds and Impulses 16. Springs and Joints Advanced Topics Index

Quad tree


A quad tree recursively subdivides a game world into smaller and smaller sections. It's called a quad tree because each non-leaf node is divided into four smaller nodes. Usually, quad trees are dynamic, meaning they rearrange at runtime. Every node has a maximum number of children, if the number of objects in a node exceeds this, the node is split:

To build a quad tree we must start with a root node. This root node encompasses all of the objects in a given scene. If the root node contains more than some arbitrary number of game objects, it subdivides into four new leaf nodes. The same splitting process is recursively applied to each child. This leaves us with the edge case where some children are just too big. What happens if two objects happen to overlap at a point? No matter how far we subdivide, they will never separate:

To avoid this Infinite Subdivision, we can assign a maximum depth to the quad tree. But there are other edge cases to consider as well. What happens when an object...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £13.99/month. Cancel anytime
Visually different images