Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Statistical Application Development with R and Python

You're reading from   Statistical Application Development with R and Python Develop applications using data processing, statistical models, and CART

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher
ISBN-13 9781788621199
Length 432 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Prabhanjan Narayanachar Tattar Prabhanjan Narayanachar Tattar
Author Profile Icon Prabhanjan Narayanachar Tattar
Prabhanjan Narayanachar Tattar
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Statistical Application Development with R and Python - Second Edition
Credits
About the Author
Acknowledgment
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
1. Data Characteristics FREE CHAPTER 2. Import/Export Data 3. Data Visualization 4. Exploratory Analysis 5. Statistical Inference 6. Linear Regression Analysis 7. Logistic Regression Model 8. Regression Models with Regularization 9. Classification and Regression Trees 10. CART and Beyond Index

Chapter 8. Regression Models with Regularization

In Chapter 6, Linear Regression Analysis, and Chapter 7, Logistic Regression Model, we focused on the linear and logistic regression models. In the model selection issues with the linear regression model, we found that a covariate is either selected or not, depending on the associated p-value. However, the rejected covariates are not given any kind of consideration once the p-value is less than the threshold. This may lead to discarding the covariates, even if they have some influence on the regressand. In particular, the final model may thus lead to overfitting of the data, and this problem needs to be addressed.

We will first consider fitting a polynomial regression model, without the technical details, and see how higher order polynomials give a very good fit, which comes with a higher price. A more general framework of B-splines is considered next. This approach leads us to the smooth spline models, which are actually ridge regression models...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime
Visually different images