Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Python Data Visualization

You're reading from   Mastering Python Data Visualization Generate effective results in a variety of visually appealing charts using the plotting packages in Python

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher
ISBN-13 9781783988327
Length 372 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Kirthi Raman Kirthi Raman
Author Profile Icon Kirthi Raman
Kirthi Raman
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Mastering Python Data Visualization
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. A Conceptual Framework for Data Visualization FREE CHAPTER 2. Data Analysis and Visualization 3. Getting Started with the Python IDE 4. Numerical Computing and Interactive Plotting 5. Financial and Statistical Models 6. Statistical and Machine Learning 7. Bioinformatics, Genetics, and Network Models 8. Advanced Visualization Go Forth and Explore Visualization Index

Index

A

  • anaconda
    • packages, installed / Packages installed with Anaconda
  • Anaconda distribution of Spyder from Continuum Analytics / Types of Python IDE
  • Anaconda from Continuum Analytics / Anaconda from Continuum Analytics
  • analytics
    • about / Data analysis and insight
  • animation / Animation
  • Anscombe's quartet
    • URL / Where does visualization fit in?
  • array indexing
    • about / Array indexing
    • numerical indexing / Numerical indexing
    • logical indexing / Logical indexing
  • Artificial Intelligence (AI)
    • about / An overview of statistical and machine learning
  • author-driven narratives
    • about / Author-driven narratives

B

  • balloon layout / Balloon layout
  • bar graphs
    • about / Bar graphs and pie charts, Bar graphs
  • Bayesian linear regression
    • about / Bayesian linear regression
  • Bayes theorem
    • about / The Bayes theorem
  • Bio package
    • URL / A genetic programming example
  • Bokeh / Interactive visualization packages
    • about / Bokeh
  • box-and-whisker plot / Distribution
  • box plot
    • about / Box plots
    / Distribution
  • bubble charts
    • about / Bubble charts

C

  • Canopy Express / Canopy from Enthought
  • Canopy from Enthought / Types of Python IDE, Canopy from Enthought
  • circular layout / Circular layout
  • classification methods
    • about / Classification methods
  • clustering
    • about / Data processing
  • cognitive context
    • URL / Data, information, knowledge, and insight
  • Comma Separated Value (CSV) / The Ebola example
  • computer simulation
    • about / Computer simulation
    • benefits / Computer simulation
    • types / Computer simulation
    • Python, random package / Python's random package
    • SciPys random / SciPy's random functions
    • examples / Simulation examples
    • signal, processing / Signal processing
    • animation / Animation
    • visualization methods, HTML5 used / Visualization methods using HTML5
    • Julia / How is Julia different from Python?, D3.js for visualization
    • dashboards / Dashboards
  • conda
    • about / An overview of conda, An overview of conda
  • correlation coefficients / Correlation
  • Cython
    • URL / What exactly is Monte Carlo simulation?
    / Packages websites

D

  • D3.js / How is Julia different from Python?
    • for visualization / D3.js for visualization, Dashboards
  • dashboards / Dashboards
  • data
    • about / Data
  • data analysis
    • about / Data analysis and insight
  • data analytics
    • about / Data analysis and insight
  • data collection / Data collection
  • data preprocessing
    • about / Data preprocessing
  • data processing / Data processing
  • datasets
    • getting / Getting datasets
  • data source
    • URL / What is a good visualization?, The visualization example in sports
  • data structures
    • stacks / Stacks
    • tuples / Tuples
    • sets / Sets
    • queues / Queues
    • dictionaries / Dictionaries
    • tries / Tries
  • data transformation
    • about / The transformation of data, Transforming data into information
    • data collection / Data collection
    • data preprocessing / Data preprocessing
    • data processing / Data processing
    • data, organizing / Organizing data
    • datasets, getting / Getting datasets
  • data visualization
    • history / Data visualization history
    • before computers / Visualization before computers, The Cholera epidemics in London (1831-1855)
    • URL / Visualization before computers
    • developments / Later developments in data visualization
    • about / Data visualization today
  • decision tree
    • about / Decision tree
    • example / An example
  • deterministic model
    • about / The deterministic model
    • gross return / Gross returns
  • dictionaries
    • about / Dictionaries
    • for matrix representation / Dictionaries for matrix representation
    • sparse matrices / Sparse matrices
    • memoization / Dictionaries for memoization
  • diffusion-based simulation
    • about / The diffusion-based simulation
  • directed acyclic graph test
    • about / The directed acyclic graph test
  • directed graphs
    • about / Directed graphs and multigraphs
  • Disco
    • URL / The performance of Python
  • Document Object Model (DOM) elements / D3.js for visualization

E

  • Ebola example
    • about / The Ebola example
    • URL / The Ebola example
  • event listeners / Event listeners

F

  • fast Fourier transform (FFT) / Signal processing
  • flow network
    • maximum flow / Maximum flow and minimum cut
  • font file
    • URL / The Twitter text
  • frames per second (fps) / Animation

G

  • Gapminder
    • about / Gapminder
  • genetic programming
    • eample / A genetic programming example
  • geometric Brownian simulation
    • about / Geometric Brownian simulation
  • Gestalt perception
    • principles / The Gestalt principles of perception
  • good visualization
    • about / What is a good visualization?
  • graph-tool
    • about / Graph-tool
    • URL / Graph-tool
    • PageRank / PageRank
  • graph data
    • storing / Storing graph data
  • graphical user interfaces (GUIs) / Packages websites
  • graphs
    • displaying / Displaying graphs
    • igraph / igraph
    • NetworkX / NetworkX
    • clustering coefficient / The clustering coefficient of graphs

H

  • histogram / Distribution
  • Humanitarian Data Exchange (HDX) / The Ebola example
  • human perception
    • URL / How does visualization help decision-making?

I

  • IDE tools
    • about / The IDE tools in Python
    • Python 3.x versus Python 2.7 / Python 3.x versus Python 2.7
    • interactive tools, types / Types of interactive tools
  • igraph
    • abou / igraph
  • information
    • about / Information
    • transforming, to knowledge / Transforming information into knowledge
    • transforming, to insight / Transforming knowledge into insight
  • information visualization / Perception and presentation methods
  • Integrated Development Environment (IDE) / Development tools
  • Interactive Editor for Python (IEP) / Types of Python IDE, Interactive Editor for Python (IEP)
  • interactive tools
    • about / Types of interactive tools
    • IPython / IPython
    • Plotly / Plotly
  • Interactive visualization packages
    • about / Interactive visualization packages
  • IPython
    • URL / Anaconda from Continuum Analytics
    • about / IPython
    / Packages websites

J

  • JIT (just-in-time) compilation / The performance of Python
  • Julia
    • about / How is Julia different from Python?

K

  • k-means clustering
    • about / k-means clustering
  • k-nearest neighbor (k-NN)
    • about / k-nearest neighbors
  • k-nearest neighbors (kNN) / K-nearest neighbors
  • Kernel Density Estimation (KDE)
    • about / KDE plots
  • knowledge
    • about / Knowledge

L

  • layouts
    • circular layout / Circular layout
    • radial layout / Radial layout
    • balloon layout / Balloon layout
  • linear models
    • about / Generalized linear models
  • linear regression
    • about / Understanding linear regression, Linear regression
  • logical indexing / Logical indexing
  • logistic regression
    • about / Logistic regression

M

  • machine learning
    • about / An overview of statistical and machine learning
  • matplotlib
    • about / Packages websites, About matplotlib
    • sources / About matplotlib
  • Matplotlib / Visualization plots with Anaconda
  • matplotlib-basemap / Packages websites
  • Mayavi / Visualization plots with Anaconda
  • MKL functions
    • about / MKL functions
  • Monte Carlo simulation
    • about / Monte Carlo simulation, What exactly is Monte Carlo simulation?
    • URL / What exactly is Monte Carlo simulation?
    • inventory problem / An inventory problem in Monte Carlo simulation
    • in basketball / Monte Carlo simulation in basketball
    • volatility plot / The volatility plot
    • implied volatilities / Implied volatilities
  • Moving Average Convergence/Divergence (MACD)
    • URL / Obtaining data
  • multigraphs
    • about / Directed graphs and multigraphs

N

  • 1-nearest neighbor (1-NN)
    • about / k-nearest neighbors
  • natural language processing (NLP) tasks / The Naïve Bayes classifier using TextBlob
  • Naïve Bayes classifier
    • about / The Naïve Bayes classifier
    • TextBlob used / The Naïve Bayes classifier using TextBlob, The Naïve Bayes classifier using TextBlob
    • TextBlob, installing / Installing TextBlob
  • NetworkX / Visualization plots with Anaconda, Packages websites
    • abou / NetworkX
  • New York Stock Exchange (NYSE) / Plotting the stock price chart
  • numerical indexing / Numerical indexing
  • Numeric Python (NumPy) package / SciPy's random functions
  • NumPy
    • about / NumPy, SciPy, and MKL functions, NumPy
    • universal functions / NumPy universal functions
    • shape manipulation / Shape and reshape manipulation
    • reshape manipulation / Shape and reshape manipulation
    • interpolation, example / An example of interpolation
    • vectorizing functions / Vectorizing functions
    • linear algebra, summary / Summary of NumPy linear algebra
    / Packages websites

P

  • pajek format
    • URL / igraph
  • pajek networks
    • URL / igraph
  • Pandas / Packages websites
  • perception and presentation methods
    • about / Perception and presentation methods
    • Gestalt principles / The Gestalt principles of perception
  • pie charts
    • about / Bar graphs and pie charts, Pie charts
  • planar graph test
    • about / The planar graph test
  • Plotly
    • about / Plotly
    / Visualization plots with Anaconda
  • plots
    • animated and interactive plots, creating / Creating animated and interactive plots
  • portfolio valuation
    • about / The portfolio valuation
  • positive sentiments
    • viewing, word clouds used / Viewing positive sentiments using word clouds
  • Principal component analysis (PCA)
    • about / Principal component analysis
    • scikit-learn, installing / Installing scikit-learn
  • Probability Density Function (PDF)
    • about / KDE plots
  • PyCharm / Types of Python IDE, PyCharm
  • PyDev / Types of Python IDE, PyDev
  • pygooglechart / Visualization plots with Anaconda
  • PyQt / Packages websites
  • PySide / Packages websites
  • Python
    • IDE tools / The IDE tools in Python
    • performance / The performance of Python
    • packages / Packages websites
  • Python 3.x
    • versus Python 2.7 / Python 3.x versus Python 2.7
  • Python IDE, types
    • about / Types of Python IDE
    • PyCharm / PyCharm
    • PyDev / PyDev
    • Interactive Editor for Python (IEP) / Interactive Editor for Python (IEP)
    • Canopy, from Enthought / Canopy from Enthought
    • Anaconda from Continuum Analytics / Anaconda from Continuum Analytics
  • Python Imaging Library (PIL) / Packages websites

Q

  • queues
    • about / Queues

R

  • radial layout / Radial layout
  • reader-driven narratives
    • about / Reader-driven narratives
    • Gapminder / Gapminder
    • union address, state / The State of the Union address
    • USA, mortality rate / Mortality rate in the USA
    • example narratives / A few other example narratives
  • Relative Strength Indicator (RSI)
    • URL / Obtaining data

S

  • Scalar selection
    • about / Scalar selection
  • scatter plots
    • about / Scatter plots and bubble charts, Scatter plots
    • URL / Scatter plots
  • Schelling Segregation Model (SSM)
    • about / Schelling's Segregation Model
  • Scientific PYthon Development EnviRonment (Spyder) / Anaconda from Continuum Analytics
  • scientific visualization / Perception and presentation methods
  • Scikit / Packages websites
  • scikit-learn
    • installing / Installing scikit-learn
  • scikit-learn package
    • URL / Linear regression
  • SciPy
    • about / NumPy, SciPy, and MKL functions, SciPy
    • packages / SciPy
    • linear equations, example / An example of linear equations
    • vectorized numerical derivative / The vectorized numerical derivative
    / Packages websites
  • Seaborn / Packages websites
  • sets
    • about / Sets
  • signal processing / Signal processing
  • slicing
    • about / Slicing
    • flat used / Slice using flat
  • social networks
    • analysis / Analysis of social networks
  • sparse matrices
    • visualize sparseness / Visualizing sparseness
  • sports example
    • about / A sports example
    • URL / A sports example
    • results, visually representing / Visually representing the results
  • Spyder
    • about / An overview of Spyder
    • components / An overview of Spyder
  • square map plot / The square map plot
  • SSA module
    • URL / Stochastic block models
  • stacks
    • about / Stacks
  • statistical learning
    • about / An overview of statistical and machine learning
  • Stochastic block models
    • about / Stochastic block models
  • Stochastic Differential Equation (SDE) / Simulation examples
  • stochastic model
    • about / The stochastic model
    • Monte Carlo simulation / Monte Carlo simulation
    • portfolio valuation / The portfolio valuation
    • simulation model / The simulation model
    • geometric Brownian simulation / Geometric Brownian simulation
    • diffusion-based simulation / The diffusion-based simulation
  • stock price
    • URL / Obtaining data
  • stories
    • creating, with data / Creating interesting stories with data
    • reader-driven narratives / Why are stories so important?, Reader-driven narratives
    • author-driven narratives / Why are stories so important?, Author-driven narratives
  • Support vector machines (SVM)
    • about / Support vector machines
  • surface-3D plot / The surface-3D plot
  • sypder-app / Anaconda from Continuum Analytics

T

  • tab completion
    • URL / Anaconda from Continuum Analytics
  • TextBlob
    • URL / The Twitter text, The Naïve Bayes classifier
  • threshold model
    • about / The threshold model
  • tries
    • about / Tries
  • tuples
    • about / Tuples
  • Twitter text
    • about / The Twitter text

V

  • Veusz / Visualization plots with Anaconda
  • VisPy / Interactive visualization packages
    • about / VisPy
    • URL / VisPy
  • visualization
    • benefits / How does visualization help decision-making?
    • URL / How does visualization help decision-making?, Visualization plots
    • about / Where does visualization fit in?
    • plots / Visualization plots
    • planning, need for / Why does visualization require planning?
    • scientific visualization / Perception and presentation methods
    • information visualization / Perception and presentation methods
    • matplotlib used / Visualization using matplotlib
  • visualization, best practices
    • about / Some best practices for visualization
    • comparison and ranking / Comparison and ranking
    • correlation / Correlation
    • distribution / Distribution
    • location-specific or geodata / Location-specific or geodata
    • part to whole / Part-to-whole relationships
    • trends over time / Trends over time
  • visualization, interactive
    • about / Interactive visualization
    • event listeners / Event listeners
    • layouts / Layouts
  • visualization example
    • in sports / The visualization example in sports
  • visualization plots, with Anaconda
    • about / Visualization plots with Anaconda
    • surface-3D plot / The surface-3D plot
    • square map plot / The square map plot
  • visualization tools, in Python
    • about / Visualization tools in Python
    • development tools / Development tools
    • Canopy, from Enthought / Canopy from Enthought
    • Anaconda, from continuum analytics / Anaconda from Continuum Analytics
  • VSTOXX data
    • URL / The volatility plot, Implied volatilities

W

  • Wakari / Interactive visualization packages
  • web feeds
    • about / Web feeds
  • word clouds
    • about / Word clouds
    • installing / Installing word clouds
    • input for / Input for word clouds
    • web feeds / Web feeds
    • Twitter text / The Twitter text
    • stock price chart, plotting / Plotting the stock price chart
    • data, obtaining / Obtaining data
    • used, for viewing positive sentiments / Viewing positive sentiments using word clouds
  • World Health Organization (WHO) / The Ebola example
lock icon The rest of the chapter is locked
arrow left Previous Section
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime
Visually different images