Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning IPython for Interactive Computing and Data Visualization, Second Edition

You're reading from   Learning IPython for Interactive Computing and Data Visualization, Second Edition Get started with Python for data analysis and numerical computing in the Jupyter notebook

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher
ISBN-13 9781783986989
Length 200 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Cyrille Rossant Cyrille Rossant
Author Profile Icon Cyrille Rossant
Cyrille Rossant
Arrow right icon
View More author details
Toc

Index

A

  • Anaconda
    • Python, installing with / Installing Python with Anaconda
    • downloading / Downloading Anaconda
    • installing / Installing Anaconda
    • terminal, opening / Opening a terminal
    • home directory, finding / Finding your home directory
    • system's PATH, manipulating / Manipulating your system path
    • installation, testing / Testing your installation
    • environments, managing / Managing environments
    • conda commands / Common conda commands
    • references / References
    • notebooks, downloading / Downloading the notebooks
  • arguments / Functions
  • array manipulation routines
    • references / Basic array manipulations
  • arrays
    • creating / Creating arrays
    • references / Creating arrays
    • loading, from files / Loading arrays from files
    • basic array manipulations / Basic array manipulations
    • computing / Computing with NumPy arrays
    • selection / Selection and indexing
    • indexing / Selection and indexing
    • boolean operations / Boolean operations on arrays
    • mathematical operations / Mathematical operations on arrays
    • density map, with NumPy / A density map with NumPy

B

  • Basemap
    • about / The matplotlib Basemap toolkit
    • references / The matplotlib Basemap toolkit
  • Bokeh
    • about / Bokeh
    • references / Bokeh
  • boolean operations
    • on arrays / Boolean operations on arrays
  • brew
    • URL / Using IPython as an extended shell
  • broadcasting
    • about / Basic array manipulations
  • brownian motion / Random walk

C

  • C
    • writing in Python, Cython used / Writing C in Python with Cython
  • C++
    • URL / C/C++ with Python
  • C/C++, with Python
    • about / C/C++ with Python
    • Cython / C/C++ with Python
    • SWIG / C/C++ with Python
    • weave / C/C++ with Python
    • ctypes / C/C++ with Python
    • cffi / C/C++ with Python
  • C compiler
    • installing / Installing Cython and a C compiler for Python
  • chaining syntax / Joins
  • code cell, Notebook / Structure of a notebook cell, Code cells
  • column-major order (Fortran-order)
    • about / How an ndarray is stored in memory
  • computing, techniques
    • about / Further high-performance computing techniques
    • Message Passing Interace (MPI) / MPI
    • distributed computing / Distributed computing
    • C/C++, with Python / C/C++ with Python
    • Graphics Processing Units (GPUs) / GPU computing
    • PyPy / PyPy
    • Julia / Julia
  • conda / Installing Python with Anaconda
    • commands / Common conda commands
  • conditional branches / Conditional branches
  • ctypes / C/C++ with Python
  • Cython
    • used, for writing C in Python / Writing C in Python with Cython
    • installing / Installing Cython and a C compiler for Python
    • Eratosthenes Sieve, implementing / Implementing the Eratosthenes Sieve in Python and Cython
    • URL / Implementing the Eratosthenes Sieve in Python and Cython, C/C++ with Python
    • user guide, URL / Implementing the Eratosthenes Sieve in Python and Cython
    • tutorials, URL / Implementing the Eratosthenes Sieve in Python and Cython

D

  • 3D visualization libraries
    • about / 3D visualization
    • Mayavi / Mayavi
    • VisPy / VisPy
  • data
    • manipulating / Manipulating data
    • selecting / Selecting data
    • columns, selecting / Selecting columns
    • rows, selecting / Selecting rows
    • boolean indexing, filtering with / Filtering with boolean indexing
    • numbers, computing with / Computing with numbers
    • text, working with / Working with text
    • dates and times, working with / Working with dates and times
    • missing data, handling / Handling missing data
  • Data-Driven Documents (D3)
    • about / Displaying rich HTML elements in the Notebook
    • references / JavaScript and D3 in the Notebook
  • dataset, in Notebook
    • exploring / Exploring a dataset in the Notebook
    • data subset / Provenance of the data
    • URL / Provenance of the data
    • references / Provenance of the data
    • public datasets / Provenance of the data
    • downloading / Downloading and loading a dataset
    • loading / Downloading and loading a dataset
    • plots creating, matplotlib used / Making plots with matplotlib
    • descriptive statistics, with pandas and seaborn / Descriptive statistics with pandas and seaborn
  • decorators
    • about / Functional programming
    • URL / Functional programming
  • density map
    • computing / A density map with NumPy
  • distributed computing
    • Apache Spark / Distributed computing
    • Dask / Distributed computing
    • xray / Distributed computing
    • Bolt / Distributed computing

E

  • Eratosthenes Sieve
    • implementing, in Python / Implementing the Eratosthenes Sieve in Python and Cython
    • implementing, in Cython / Implementing the Eratosthenes Sieve in Python and Cython
  • expit function
    • about / A density map with NumPy

F

  • functional programming / Functional programming
  • functions / Functions

G

  • General-Purpose GPU computing (GPUGPU) / GPU computing
  • GeoPandas
    • about / GeoPandas
  • Git Distributed Version Control System (DVCS) / Downloading the notebooks
  • GitHub / Downloading the notebooks
  • GNU C Compiler (gcc) / Installing Cython and a C compiler for Python
  • Graphics Processing Units (GPUs)
    • about / GPU computing
  • group-by operation
    • about / Group-by
  • GUI event loop support
    • URL / GUI toolkits

H

  • high-level plotting libraries
    • about / High-level plotting
    • Bokeh / Bokeh
    • Vincent and Vega / Vincent and Vega
    • Plotly / Plotly
  • HTML elements
    • displaying, in Notebook / Displaying rich HTML elements in the Notebook

I

  • IJulia kernel
    • URL / Julia
  • image processing
    • about / Image processing
  • indentation / Indentation
  • InteractiveShell instance
    • URL / Creating a custom magic command in an IPython extension
  • IPython
    • about / Jupyter and IPython
    • references / References, Other topics
    • features / Ten Jupyter/IPython essentials
    • display system, URL / Displaying SVG in the Notebook
  • IPython, features
    • IPython, using as extended shell / Using IPython as an extended shell
    • magic commands / Learning magic commands
    • tab completion / Mastering tab completion
    • Markdown cell, in Notebook / Writing interactive documents in the Notebook with Markdown
    • interactive widgets, creating in Notebook / Creating interactive widgets in the Notebook
    • Python scripts, running from IPython / Running Python scripts from IPython
    • Python objects, introspecting / Introspecting Python objects
    • Python code, debugging / Debugging Python code
    • Python code, benchmarking / Benchmarking Python code
    • Python code, profiling / Profiling Python code
  • IPython.parallel
    • about / Distributing tasks on several cores with IPython.parallel
    • direct interface / Direct interface
    • load-balanced interface / Load-balanced interface
    • documentation, URL / Load-balanced interface
  • IPython 4.0
    • URL / Jupyter and IPython
  • IPython Cookbook
    • URL / What this book covers, Writing C in Python with Cython
  • IPython extension
    • custom magic command, creating / Creating a custom magic command in an IPython extension
    • about / Creating a custom magic command in an IPython extension

J

  • JavaScript
    • used, for customizing Notebook interface / Customizing the Notebook interface with JavaScript
  • JavaScript extensions
    • URL / Customizing the Notebook interface with JavaScript
  • joins
    • about / Joins
  • Julia
    • about / Julia
  • Jupyter
    • about / Jupyter and IPython
    • Notebook, URL / Jupyter and IPython
    • URL / Jupyter and IPython
    • features / Ten Jupyter/IPython essentials
  • Jupyter kernel
    • writing / Writing a new Jupyter kernel
    • references / Writing a new Jupyter kernel
  • Jupyter Notebook
    • launching / Launching the Jupyter Notebook
  • Just-In-Compiler (JIT) / Accelerating Python code with Numba

K

  • kernel / The Notebook dashboard
  • keyword arguments / Positional and keyword arguments

L

  • Leaflet
    • about / Leaflet wrappers: folium and mplleaflet
    • folium / Leaflet wrappers: folium and mplleaflet
    • mplleaflet / Leaflet wrappers: folium and mplleaflet
    • references / Leaflet wrappers: folium and mplleaflet
  • libdynd
    • URL / GPU computing
  • list comprehension / Loops
  • loops / Loops

M

  • magic commands
    • about / Using IPython as an extended shell, Learning magic commands
    • creating, in IPython extension / Creating a custom magic command in an IPython extension
  • manipulation functions
    • reference link / A density map with NumPy
  • maps
    • creating / Maps and geometry
    • matplotlib Basemap toolkit / The matplotlib Basemap toolkit
    • GeoPandas / GeoPandas
    • Leaflet / Leaflet wrappers: folium and mplleaflet
  • Markdown cell, Notebook / Markdown cells
    • about / Structure of a notebook cell, Markdown cells
    • references / Writing interactive documents in the Notebook with Markdown
  • mathematical functions, NumPy
    • URL / Mathematical operations on arrays
  • mathematical operations
    • on arrays / Mathematical operations on arrays
  • Math Kernel Library (MKL)
    • about / Why operations on ndarrays are fast
  • matplotlib
    • about / matplotlib and seaborn essentials
    • plots with / Common plots with matplotlib
    • figures, customizing / Customizing matplotlib figures
    • gallery, URL / Customizing matplotlib figures
    • figures, in Notebook / Interacting with matplotlib figures in the Notebook
    • references / Interacting with matplotlib figures in the Notebook
    • high-level plotting, with seaborn / High-level plotting with seaborn
  • Mayavi / Mayavi
  • Message Passing Interace (MPI)
    • about / MPI
    • URL / MPI
    • with IPython, URL / MPI
  • Microsoft Visual C++ Compiler for Python 2.7
    • URL / Installing Cython and a C compiler for Python
  • MinGW
    • URL / Creating a custom magic command in an IPython extension
  • Miniconda
    • URL / Installing Python with Anaconda
  • modal interface, Notebook
    • about / The Notebook modal interface
    • keyboard shortcuts, in both modes / Keyboard shortcuts available in both modes
    • keyboard shortcuts, in edit mode / Keyboard shortcuts available in the edit mode
    • keyboard shortcuts, in command mode / Keyboard shortcuts available in the command mode
  • multidimensional array
    • about / Multidimensional arrays

N

  • ndarray
    • about / Multidimensional arrays, The ndarray
    • dimensions / The ndarray
    • shape / The ndarray
    • strides / The ndarray
    • data type (dtype) / The ndarray
    • vector operations / Vector operations on ndarrays
    • storing, in memory / How an ndarray is stored in memory
  • nopython mode / Random walk
    • URL / Random walk
  • Notebook
    • about / Jupyter and IPython, Introducing the Notebook, The Notebook dashboard
    • references / References, References
    • IPython console, launching / Launching the IPython console
    • Jupyter Notebook launching / Launching the Jupyter Notebook
    • dashboard / The Notebook dashboard
    • user interface / The Notebook user interface
    • cell, structure / Structure of a notebook cell
    • modal interface / The Notebook modal interface
    • dataset, exploring / Exploring a dataset in the Notebook
    • HTML elements, displaying / Displaying rich HTML elements in the Notebook
    • Scalable Vector Graphics (SVG), displaying / Displaying SVG in the Notebook
    • JavaScript / JavaScript and D3 in the Notebook
    • D3 / JavaScript and D3 in the Notebook
  • Notebook interface
    • customizing, JavaScript used / Customizing the Notebook interface with JavaScript
  • Numba
    • Python code, accelerating with / Accelerating Python code with Numba
    • URL / Random walk
    • documentation, URL / Random walk
  • numexpr
    • URL / Universal functions
  • NumPy
    • arrays / Creating and loading arrays
    • references / Loading arrays from files
    • density map, computing / A density map with NumPy
    • versus pandas / A density map with NumPy
  • NumPy universal functions (ufuncs)
    • URL / Universal functions

O

  • Object-oriented programming (OOP) / Object-oriented programming
  • operations
    • complex operations / Complex operations
    • group-by operation / Group-by
    • joins / Joins

P

  • pandas
    • versus NumPy / A density map with NumPy
  • Partial Differential Equation (PDE)
    • about / Multidimensional arrays
  • passage by assignment / Passage by assignment
  • Plotly
    • about / Plotly
  • plots
    • about / Choosing a plotting backend
    • inline plots / Inline plots
    • exported figures / Exported figures
    • plt.savefig(), URL / Exported figures
    • GUI toolkits / GUI toolkits
    • dynamic inline plots / Dynamic inline plots
    • web-based visualization / Web-based visualization
    • D3.js, URL / Web-based visualization
    • mpld3, URL / Web-based visualization
    • customization options, URL / Common plots with matplotlib
  • positional arguments / Positional and keyword arguments
  • Powershell
    • URL / Opening a terminal
  • pure function / Passage by assignment
  • PyCuda
    • URL / GPU computing
  • pylab mode
    • URL / matplotlib and seaborn essentials
  • PyOpenCL
    • URL / GPU computing
  • PyPy
    • URL / PyPy
    • about / PyPy
  • Python
    • about / What are Python, IPython, and Jupyter?
    • competitors / What are Python, IPython, and Jupyter?
    • installing, with Anaconda / Installing Python with Anaconda
    • special characters, URL / String escaping
    • C compiler, installing / Installing Cython and a C compiler for Python
    • Cython, installing / Installing Cython and a C compiler for Python
    • Eratosthenes Sieve, implementing / Implementing the Eratosthenes Sieve in Python and Cython
  • Python, code
    • debugging / Debugging Python code
    • benchmarking / Benchmarking Python code
    • profiling / Profiling Python code
  • Python, fundamentals
    • about / A crash course on Python
    • Hello world / Hello world
    • variables / Variables
    • string escaping / String escaping
    • lists / Lists
    • loops / Loops
    • indentation / Indentation
    • conditional branches / Conditional branches
    • functions / Functions
    • keyword arguments / Positional and keyword arguments
    • positional arguments / Positional and keyword arguments
    • passage by assignment / Passage by assignment
    • errors / Errors
    • Object-oriented programming (OOP) / Object-oriented programming
    • functional programming / Functional programming
    • Python 2 and 3 / Python 2 and 3
    • references / Going beyond the basics
  • Python 2 and 3 / Python 2 and 3
  • Python code
    • accelerating, with Numba / Accelerating Python code with Numba, Random walk
    • random walk / Random walk
  • Python Package Index (PyPI)
    • about / Common conda commands
    • references / Common conda commands

Q

  • Qt console
    • URL / Launching the IPython console

R

  • record arrays
    • about / The ndarray
  • relational database management systems (RDBMS)
    • about / Complex operations
  • row-major order (C-order)
    • about / How an ndarray is stored in memory

S

  • Scalable Vector Graphics (SVG)
    • about / Displaying SVG in the Notebook
    • displaying, in Notebook / Displaying SVG in the Notebook
  • scikit-image
    • about / Image processing
    • references / Image processing
  • seaborn
    • about / matplotlib and seaborn essentials
    • high-level plotting with / High-level plotting with seaborn
  • sequential locality
    • about / Why operations on ndarrays are fast
  • statistical functions, NumPy
    • URL / Mathematical operations on arrays
  • strides
    • about / How an ndarray is stored in memory
  • structured arrays
    • about / The ndarray
    • reference link / The ndarray
  • Structured Query Language (SQL)
    • about / Complex operations
  • SWIG / C/C++ with Python

U

  • universal functions
    • about / Universal functions
    • references / Universal functions

V

  • variables / Variables
  • vector (or vectorized) operations
    • on ndarrays / Vector operations on ndarrays
    • comparing / Why operations on ndarrays are fast
  • vector computing
    • about / A primer to vector computing
    • multidimensional array / Multidimensional arrays
    • ndarray / The ndarray
    • vector operations, on ndarray / Vector operations on ndarrays
    • in NumPy / How fast are vector computations in NumPy?
  • vectorization / Computing with numbers
  • Vega
    • about / Vincent and Vega
    • references / Vincent and Vega
  • Vincent
    • about / Vincent and Vega
    • references / Vincent and Vega
  • VisPy
    • about / VisPy
    • references / VisPy

W

  • Wakari
    • URL / Installing Python with Anaconda
  • weave / C/C++ with Python
  • web technologies
    • references / JavaScript and D3 in the Notebook
lock icon The rest of the chapter is locked
arrow left Previous Section
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime
Visually different images